-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_detect_recognize_image.py
92 lines (76 loc) · 3.42 KB
/
face_detect_recognize_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import cv2
import time
import numpy as np
import os
from PIL import Image
#import trained classifier for face detection
face_cascade = cv2.CascadeClassifier('./src/cascade/cascade.xml')
#create face recognizer of LBP Histogram
recognizer = cv2.face.LBPHFaceRecognizer_create()
Names = {1: 'yogendra', 2: 'Omprakash_C', 3: 'jarnail', 4: 'Kaushal', 5: 'Kaushal', 6: 'Dikshit', 7: 'Deepak', 8: 'puneet', 9: 'Mahesh', 10: 'Krishna', 11: 'Naresh', 12: 'Niraj', 13: 'Tanmay', 14: 'Kapil', 15: 'Omprakash'}
#names = ['none', 'Kapil', 'Omprakash D','Kaushal','Omprakash C','Deekshith','Krishna','Ankit','Tanmay']
font = cv2.FONT_HERSHEY_SIMPLEX
#function for face detection
def face_detect_recognize(image_path,Names):
# frame value is stored into img so original input does not get effected
img = image_path
r = 500.0 / img.shape[1]
dim = (500, int(img.shape[0] * r))
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
# convert RGB color image to grey
grey = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
#Detect faces from the input frame using face_cascade
faces = face_cascade.detectMultiScale(grey, 1.3, 5)
# draw rectangle across each face and name of the person over that rectangle
for (x,y,w,h) in faces:
cv2.rectangle(resized,(x,y),(x+w,y+h),(255,0,0),2)
Id, confidence = recognizer.predict(grey[y:y+h,x:x+w])
if (confidence < 100):
Id = Names[Id]
confidence = " {0}%".format(round(100 - confidence))
else:
Id = "unknown"
confidence = " {0}%".format(round(100 - confidence))
cv2.putText(resized, str(Id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(resized, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
cv2.imshow('img',resized)
cv2.waitKey(10000)
def get_images_and_labels(database_path):
#get the path of all the files in the folder
imagePaths=[os.path.join(database_path,f) for f in os.listdir(database_path)]
#create empth face list
sample_faces=[]
#create empty ID list
Ids=[]
Names = {}
#now looping through all the image paths and loading the Ids and the images
for image_path in imagePaths:
# ignore if the file does not have jpg extension :
if(os.path.split(image_path)[-1].split(".")[-1]!='jpg'):
continue
#loading the image and converting it to gray scale
pilImage=Image.open(image_path).convert('L')
#Now we are converting the PIL image into numpy array
imageNp=np.array(pilImage,'uint8')
#getting the Id from the image
Id=int(os.path.split(image_path)[-1].split(".")[0])
name = os.path.split(image_path)[-1].split(".")[1]
# extract the face from the training image sample
faces= face_cascade.detectMultiScale(imageNp)
#If a face is there then append that in the list as well as Id of it
for (x,y,w,h) in faces:
sample_faces.append(imageNp[y:y+h,x:x+w])
Ids.append(Id)
Names[Id] = name
return sample_faces,Ids,Names
def train_face_recognizer(database_path):
faces,Ids,Names = get_images_and_labels(database_path)
recognizer.train(faces, np.array(Ids))
recognizer.save('trainer/trainer.yml')
print "Total number of faces feeded in recognizer :",len(faces)
return Names
#train_face_recognizer('./src/training_faces')
#import trained faces of database for face recognition
recognizer.read('trainer/trainer.yml')
img = cv2.imread('index7.jpg')
face_detect_recognize(img,Names)