-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathagent.lua
447 lines (374 loc) · 15.6 KB
/
agent.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
-- agent
require 'torch'
local cmd = torch.CmdLine()
cmd:text()
cmd:text('Train Agent in Environment:')
cmd:text()
cmd:text('Options:')
cmd:option('-exp_folder', '', 'name of folder where current exp state is being stored')
cmd:option('-text_world_location', '', 'location of text-world folder')
cmd:option('-framework', '', 'name of training framework')
cmd:option('-env', '', 'name of environment to use')
cmd:option('-env_params', '', 'string of environment parameters')
cmd:option('-actrep', 1, 'how many times to repeat action')
cmd:option('-random_starts', 0, 'play action 0 between 1 and random_starts ' ..
'number of times at the start of each training episode')
cmd:option('-name', '', 'filename used for saving network and training history')
cmd:option('-network', '', 'reload pretrained network')
cmd:option('-agent', '', 'name of agent file to use')
cmd:option('-agent_params', '', 'string of agent parameters')
cmd:option('-seed', 1, 'fixed input seed for repeatable experiments')
cmd:option('-saveNetworkParams', false,
'saves the agent network in a separate file')
cmd:option('-recurrent', 0,'bow or recurrent')
cmd:option('-bigram', 0,'bigram version')
cmd:option('-quest_levels', 1,'# of quests to complete in each run')
cmd:option('-state_dim', 100, 'max dimensionality of raw state (stream of symbols or BOW vocab)')
cmd:option('-max_steps', 100,'max steps per episode')
cmd:option('-prog_freq', 5*10^3, 'frequency of progress output')
cmd:option('-save_freq', 5*10^4, 'the model is saved every save_freq steps')
cmd:option('-eval_freq', 10^4, 'frequency of greedy evaluation')
cmd:option('-save_versions', 0, '')
cmd:option('-steps', 10^5, 'number of training steps to perform')
cmd:option('-eval_steps', 10^5, 'number of evaluation steps')
cmd:option('-verbose', 2,
'the higher the level, the more information is printed to screen')
cmd:option('-threads', 1, 'number of BLAS threads')
cmd:option('-gpu', -1, 'gpu flag')
cmd:option('-game_num', 1, 'game number (for parallel game servers)')
cmd:option('-wordvec_file', 'wordvec.eng' , 'Word vector file')
cmd:option('-tutorial_world', 1, 'play tutorial_world')
cmd:option('-random_test', 0, 'test random policy')
cmd:option('-analyze_test', 0, 'load model and analyze')
cmd:option('-use_wordvec', 0, 'use word vec')
cmd:text()
local opt = cmd:parse(arg)
print(opt)
RECURRENT = opt.recurrent
BIGRAM = opt.bigram
QUEST_LEVELS = opt.quest_levels
STATE_DIM = opt.state_dim
MAX_STEPS = opt.max_steps
WORDVEC_FILE = opt.wordvec_file
TUTORIAL_WORLD = (opt.tutorial_world==1)
RANDOM_TEST = (opt.random_test==1)
ANALYZE_TEST = (opt.analyze_test==1)
print(STATE_DIM)
print("Tutorial world", TUTORIAL_WORLD)
require 'client'
require 'utils'
require 'xlua'
require 'optim'
local framework
if TUTORIAL_WORLD then
framework = require 'framework_fantasy'
else
framework = require 'framework'
end
---------------------------------------------------------------
if not dqn then
dqn = {}
require 'nn'
require 'nngraph'
require 'nnutils'
-- require 'Scale'
require 'NeuralQLearner'
require 'TransitionTable'
require 'Rectifier'
require 'Embedding'
end
-- agent login
local port = 4000 + opt.game_num
print(port)
client_connect(port)
login('root', 'root')
if TUTORIAL_WORLD then
framework.makeSymbolMapping(opt.text_world_location .. 'evennia/contrib/tutorial_world/build.ev')
else
framework.makeSymbolMapping(opt.text_world_location .. 'evennia/contrib/text_sims/build.ev')
end
print("#symbols", #symbols)
EMBEDDING.weight[#symbols+1]:mul(0) --zero out NULL INDEX vector
-- init with word vec
if opt.use_wordvec==1 then
print(WORDVEC_FILE)
local wordVec = readWordVec(WORDVEC_FILE)
print(#wordVec)
for i=1, #symbols do
print("wordvec", symbols[i], wordVec[symbols[i]])
EMBEDDING.weight[i] = torch.Tensor(wordVec[symbols[i]])
assert(EMBEDDING.weight[i]:size(1) == n_hid)
end
else
for i=1, #symbols do
EMBEDDING.weight[i] = torch.rand(EMBEDDING.weight[i]:size(1))*0.02-0.01
end
end
--- General setup.
if opt.agent_params then
opt.agent_params = str_to_table(opt.agent_params)
opt.agent_params.gpu = opt.gpu
opt.agent_params.best = opt.best
opt.agent_params.verbose = opt.verbose
if opt.network ~= '' then
opt.agent_params.network = opt.network
end
opt.agent_params.actions = framework.getActions()
opt.agent_params.objects = framework.getObjects()
if RECURRENT == 0 then
if vector_function == convert_text_to_bow2 then
opt.agent_params.state_dim = 2 * (#symbols)
elseif vector_function == convert_text_to_bigram then
if TUTORIAL_WORLD then
opt.agent_params.state_dim = (#symbols*5)
else
opt.agent_params.state_dim = (#symbols*#symbols)
end
else
opt.agent_params.state_dim = (#symbols)
end
end
end
print("state_dim", opt.agent_params.state_dim)
local agent = dqn[opt.agent](opt.agent_params) -- calls dqn.NeuralQLearner:init
-- override print to always flush the output
local old_print = print
local print = function(...)
old_print(...)
io.flush()
end
local learn_start = agent.learn_start
local start_time = sys.clock()
local reward_counts = {}
local episode_counts = {}
local time_history = {}
local v_history = {}
local qmax_history = {}
local bestq_history = {}
local td_history = {}
local reward_history = {}
local step = 0
time_history[1] = 0
local total_reward
local nrewards
local nepisodes
local episode_reward
local state, reward, terminal, available_objects = framework.newGame()
local priority = false
print("Started RL based training ...")
local pos_reward_cnt = 0
local quest1_reward_cnt, quest2_reward_cnt, quest3_reward_cnt
print('[Start] Network weight sum:',agent.w:sum())
while step < opt.steps do
step = step + 1
if not RANDOM_TEST then
xlua.progress(step, opt.steps)
local action_index, object_index = agent:perceive(reward, state, terminal, nil, nil, available_objects, priority)
if reward > 0 then
pos_reward_cnt = pos_reward_cnt + 1
end
-- game over? get next game!
if not terminal then
state, reward, terminal, available_objects = framework.step(action_index, object_index)
--priority sweeping for positive rewards
if reward > 0 then
priority = true
else
priority = false
end
else
state, reward, terminal, available_objects = framework.newGame()
end
if step % opt.prog_freq == 0 then
assert(step==agent.numSteps, 'trainer step: ' .. step ..
' & agent.numSteps: ' .. agent.numSteps)
print("\nSteps: ", step, " | Achieved quest level, current reward:" , pos_reward_cnt)
agent:report()
pos_reward_cnt = 0
end
if step%1000 == 0 then
collectgarbage()
end
end
--Testing
if step % opt.eval_freq == 0 and step > learn_start then
print('Testing Starts ... ')
quest3_reward_cnt = 0
quest2_reward_cnt = 0
quest1_reward_cnt = 0
test_avg_Q = test_avg_Q or optim.Logger(paths.concat(opt.exp_folder , 'test_avgQ.log'))
test_avg_R = test_avg_R or optim.Logger(paths.concat(opt.exp_folder , 'test_avgR.log'))
test_quest1 = test_quest1 or optim.Logger(paths.concat(opt.exp_folder , 'test_quest1.log'))
if TUTORIAL_WORLD then
test_quest2 = test_quest2 or optim.Logger(paths.concat(opt.exp_folder , 'test_quest2.log'))
test_quest3 = test_quest3 or optim.Logger(paths.concat(opt.exp_folder , 'test_quest3.log'))
end
gameLogger = gameLogger or io.open(paths.concat(opt.exp_folder, 'game.log'), 'w')
state, reward, terminal, available_objects = framework.newGame(gameLogger)
total_reward = 0
nrewards = 0
nepisodes = 0
episode_reward = 0
local eval_time = sys.clock()
for estep=1,opt.eval_steps do
xlua.progress(estep, opt.eval_steps)
local action_index, object_index, q_func
if not RANDOM_TEST then
action_index, object_index, q_func = agent:perceive(reward, state, terminal, true, 0.05, available_objects)
else
action_index, object_index, q_func = agent:perceive(reward, state, terminal, true, 1, available_objects)
end
-- print Q function for previous state
if q_func then
local actions = framework.getActions()
local objects = framework.getObjects()
for i=1, #actions do
gameLogger:write(actions[i],' ', q_func[1][i],'\n')
end
gameLogger:write("-----\n")
for i=1, #objects do
gameLogger:write(objects[i],' ', q_func[2][i], '\n')
end
else
gameLogger:write("Random action\n")
end
-- Play game in test mode (episodes don't end when losing a life)
state, reward, terminal, available_objects = framework.step(action_index, object_index, gameLogger)
if TUTORIAL_WORLD then
if(reward > 9) then
quest1_reward_cnt =quest1_reward_cnt+1
elseif reward > 0.9 then
quest2_reward_cnt = quest2_reward_cnt + 1
elseif reward > 0 then
quest3_reward_cnt = quest3_reward_cnt + 1 --defeat guardian
end
else
if(reward > 0.9) then
quest1_reward_cnt =quest1_reward_cnt+1
end
end
if estep%1000 == 0 then collectgarbage() end
-- record every reward
episode_reward = episode_reward + reward
if reward ~= 0 then
nrewards = nrewards + 1
end
if terminal then
total_reward = total_reward + episode_reward
episode_reward = 0
nepisodes = nepisodes + 1
state, reward, terminal, available_objects = framework.newGame(gameLogger)
end
end
eval_time = sys.clock() - eval_time
start_time = start_time + eval_time
if not RANDOM_TEST then
agent:compute_validation_statistics()
end
local ind = #reward_history+1
total_reward = total_reward/math.max(1, nepisodes)
if #reward_history == 0 or total_reward > torch.Tensor(reward_history):max() then
agent.best_network = agent.network:clone()
end
if agent.v_avg then
v_history[ind] = agent.v_avg
td_history[ind] = agent.tderr_avg
qmax_history[ind] = agent.q_max
end
print("V", v_history[ind], "TD error", td_history[ind], "V avg:", v_history[ind])
--saving and plotting
test_avg_R:add{['% Average Reward'] = total_reward}
test_avg_Q:add{['% Average Q'] = agent.v_avg}
test_quest1:add{['% Quest 1'] = quest1_reward_cnt/nepisodes}
if TUTORIAL_WORLD then
test_quest2:add{['% Quest 2'] = quest2_reward_cnt/nepisodes}
test_quest3:add{['% Quest 3'] = quest3_reward_cnt/nepisodes}
end
test_avg_R:style{['% Average Reward'] = '-'}; test_avg_R:plot()
test_avg_Q:style{['% Average Q'] = '-'}; test_avg_Q:plot()
test_quest1:style{['% Quest 1'] = '-'}; test_quest1:plot()
if TUTORIAL_WORLD then
test_quest2:style{['% Quest 2'] = '-'}; test_quest2:plot()
test_quest3:style{['% Quest 3'] = '-'}; test_quest3:plot()
end
reward_history[ind] = total_reward
reward_counts[ind] = nrewards
episode_counts[ind] = nepisodes
time_history[ind+1] = sys.clock() - start_time
local time_dif = time_history[ind+1] - time_history[ind]
local training_rate = opt.actrep*opt.eval_freq/time_dif
print(string.format(
'\nSteps: %d (frames: %d), reward: %.2f, epsilon: %.2f, lr: %G, ' ..
'training time: %ds, training rate: %dfps, testing time: %ds, ' ..
'testing rate: %dfps, num. ep.: %d, num. rewards: %d, completion rate: %.2f',
step, step*opt.actrep, total_reward, agent.ep, agent.lr, time_dif,
training_rate, eval_time, opt.actrep*opt.eval_steps/eval_time,
nepisodes, nrewards, pos_reward_cnt/nepisodes))
pos_reward_cnt = 0
quest1_reward_cnt = 0
gameLogger:write("###############\n\n") --end of testing epoch
print('Testing Ends ... ')
collectgarbage()
end
if step % opt.save_freq == 0 or step == opt.steps then
local s, a, r, s2, term = agent.valid_s, agent.valid_a, agent.valid_r,
agent.valid_s2, agent.valid_term
agent.valid_s, agent.valid_a, agent.valid_r, agent.valid_s2,
agent.valid_term = nil, nil, nil, nil, nil, nil, nil
local w, dw, g, g2, delta, delta2, deltas, tmp = agent.w, agent.dw,
agent.g, agent.g2, agent.delta, agent.delta2, agent.deltas, agent.tmp
agent.w, agent.dw, agent.g, agent.g2, agent.delta, agent.delta2,
agent.deltas, agent.tmp = nil, nil, nil, nil, nil, nil, nil, nil
local filename = opt.name
torch.save(filename .. ".t7", {agent = agent,
model = agent.network,
best_model = agent.best_network,
reward_history = reward_history,
reward_counts = reward_counts,
episode_counts = episode_counts,
time_history = time_history,
v_history = v_history,
td_history = td_history,
qmax_history = qmax_history,
arguments=opt})
if opt.saveNetworkParams then
print('Network weight sum:', w:sum())
local nets = {network=w:clone():float()}
torch.save(filename..'.params.t7', nets, 'ascii')
end
-- save word embeddings
embedding_mat = EMBEDDING:forward(torch.range(1, #symbols+1))
embedding_save = {}
for i=1, embedding_mat:size(1)-1 do
embedding_save[symbols[i]] = embedding_mat[i]
end
embedding_save["NULL"] = embedding_mat[embedding_mat:size(1)]
-- description embeddings
local desc_embeddings
if ANALYZE_TEST then
require 'descriptions'
desc_embeddings = {}
for i=1, #DESCRIPTIONS do
local embeddings = {}
for j=1, #DESCRIPTIONS[i] do
local input_vec = framework.vector_function(DESCRIPTIONS[i][j])
local state_tmp = tensor_to_table(input_vec, self.state_dim, self.hist_len)
local output_vec = LSTM_MODEL:forward(state_tmp)
table.insert(embeddings, output_vec)
end
table.insert(desc_embeddings, embeddings)
end
end
torch.save(filename..'.embeddings.t7', {embeddings = embedding_save, symbols=symbols, desc_embeddings=desc_embeddings})
agent.valid_s, agent.valid_a, agent.valid_r, agent.valid_s2,
agent.valid_term = s, a, r, s2, term
agent.w, agent.dw, agent.g, agent.g2, agent.delta, agent.delta2,
agent.deltas, agent.tmp = w, dw, g, g2, delta, delta2, deltas, tmp
print('Saved:', filename .. '.t7')
io.flush()
collectgarbage()
if ANALYZE_TEST then
return
end
end
end