forked from DebadityaPal/RoBERTa-NL2SQL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_model.py
94 lines (68 loc) · 3.42 KB
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import os
from seq2sql_model_classes import Seq2SQL_v1
from transformers import RobertaConfig, RobertaModel, RobertaTokenizer
device = torch.device("cuda")
def get_roberta_model():
# Initializing a RoBERTa configuration
configuration = RobertaConfig()
# Initializing a model from the configuration
Roberta_Model = RobertaModel(configuration).from_pretrained("roberta-base")
Roberta_Model.to(device)
# Accessing the model configuration
configuration = Roberta_Model.config
#get the Roberta Tokenizer
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
return Roberta_Model, tokenizer, configuration
def get_seq2sql_model(roberta_hidden_layer_size, number_of_layers = 2,
hidden_vector_dimensions = 100,
number_lstm_layers = 2,
dropout_rate = 0.3,
load_pretrained_model=False, model_path=None):
'''
get_seq2sql_model
Arguments:
roberta_hidden_layer_size: sizes of hidden layers of Roberta model
number_of_layers : total number of layers
hidden_vector_dimensions : dimensions of hidden vectors
number_lstm_layers : total number of lstm layers
dropout_rate : value of dropout rate
load_pretrained_model : want to load pretrained model(true or false)
model_path : The path to the directory in which the model is contained
Returns:
model: returns the model
'''
# number_of_layers = "The Number of final layers of RoBERTa to be used in downstream task."
# hidden_vector_dimensions : "The dimension of hidden vector in the seq-to-SQL module."
# number_lstm_layers : "The number of LSTM layers." in seqtosqlmodule
sql_main_operators = ['', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG']
sql_conditional_operators = ['=', '>', '<', 'OP']
number_of_neurons = roberta_hidden_layer_size * number_of_layers # Seq-to-SQL input vector dimenstion
model = Seq2SQL_v1(number_of_neurons, hidden_vector_dimensions, number_lstm_layers, dropout_rate, len(sql_conditional_operators), len(sql_main_operators))
model = model.to(device)
if load_pretrained_model:
assert model_path != None
if torch.cuda.is_available():
res = torch.load(model_path)
else:
res = torch.load(model_path, map_location='cpu')
model.load_state_dict(res['model'])
return model
def get_optimizers(model, model_roberta,learning_rate_model=1e-3,learning_rate_roberta=1e-5):
'''
get_optimizers
Arguments:
model: returned model from get_seq2sql_model
model_roberta : returned model from get_roberta_model
fine_tune : want to fine tune(true or false)
learning_rate_model : learning rate of model (from get_seq2sql_model)
learning_rate_roberta : learning rate of roberta model (from get_roberta_model)
Returns:
opt: returns the optimised model (from get_seq2sql_model)
opt_roberta : returns the optimised roberta model (from get_roberta_model)
'''
opt = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()),
lr=learning_rate_model, weight_decay=0)
opt_roberta = torch.optim.Adam(filter(lambda p: p.requires_grad, model_roberta.parameters()),
lr=learning_rate_roberta, weight_decay=0)
return opt, opt_roberta