forked from guanyingc/SDPS-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_stage2.py
64 lines (52 loc) · 2.69 KB
/
train_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from models import model_utils
from utils import eval_utils, time_utils
def train(args, loader, models, criterion, optimizers, log, epoch, recorder):
models[1].train()
models[0].eval()
optimizer, optimizer_c = optimizers
log.printWrite('---- Start Training Epoch %d: %d batches ----' % (epoch, len(loader)))
timer = time_utils.Timer(args.time_sync);
for i, sample in enumerate(loader):
data = model_utils.parseData(args, sample, timer, 'train')
input = model_utils.getInput(args, data)
with torch.no_grad():
pred_c = models[0](input);
input.append(pred_c)
pred = models[1](input); timer.updateTime('Forward')
optimizer.zero_grad()
loss = criterion.forward(pred, data);
timer.updateTime('Crit');
criterion.backward(); timer.updateTime('Backward')
recorder.updateIter('train', loss.keys(), loss.values())
optimizer.step(); timer.updateTime('Solver')
iters = i + 1
if iters % args.train_disp == 0:
opt = {'split':'train', 'epoch':epoch, 'iters':iters, 'batch':len(loader),
'timer':timer, 'recorder': recorder}
log.printItersSummary(opt)
if iters % args.train_save == 0:
results, recorder, nrow = prepareSave(args, data, pred_c, pred, recorder, log)
log.saveImgResults(results, 'train', epoch, iters, nrow=nrow)
log.plotCurves(recorder, 'train', epoch=epoch, intv=args.train_disp)
if args.max_train_iter > 0 and iters >= args.max_train_iter: break
opt = {'split': 'train', 'epoch': epoch, 'recorder': recorder}
log.printEpochSummary(opt)
def prepareSave(args, data, pred_c, pred, recorder, log):
input_var, mask_var = data['img'], data['m']
results = [input_var.data, mask_var.data, (data['n'].data+1)/2]
if args.s1_est_d:
l_acc, data['dir_err'] = eval_utils.calDirsAcc(data['dirs'].data, pred_c['dirs'].data, args.batch)
recorder.updateIter('train', l_acc.keys(), l_acc.values())
if args.s1_est_i:
int_acc, data['int_err'] = eval_utils.calIntsAcc(data['ints'].data, pred_c['intens'].data, args.batch)
recorder.updateIter('train', int_acc.keys(), int_acc.values())
if args.s2_est_n:
acc, error_map = eval_utils.calNormalAcc(data['n'].data, pred['n'].data, mask_var.data)
pred_n = (pred['n'].data + 1) / 2
masked_pred = pred_n * mask_var.data.expand_as(pred['n'].data)
res_n = [masked_pred, error_map['angular_map']]
results += res_n
recorder.updateIter('train', acc.keys(), acc.values())
nrow = input_var.shape[0] if input_var.shape[0] <= 32 else 32
return results, recorder, nrow