-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcp_comparison.m
129 lines (109 loc) · 5.07 KB
/
cp_comparison.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [] = cp_comparison(image_input_dir, mip_input_dir, centroids_input_dir, cp_input_dir, output_dir)
config = get_config();
write_config(output_dir);
positions = config('positions');
valid = config('valid');
blob_quality_threshold = config('threshold_quality_cellprofiler');
fmt = '%s/%s';
for posidx = 1:numel(positions)
position = positions(posidx);
disp(['Position ' num2str(position) '...']);
if ismember(position, config('skip'))
disp('Skipping...');
continue;
end
pos = read_position(image_input_dir, position);
mips = read_mips(mip_input_dir, position);
mmip = max(mips{1}, mips{2});
mmip = max(mmip, mips{3});
mmip = max(mmip, mips{4});
% load blobs
[blobpositions, bloblabels, blobquality] = cp_centroids(cp_input_dir, position);
% filter the blob positions based on the config
blobpositions = blobpositions(blobquality > blob_quality_threshold, :);
bloblabels = bloblabels(blobquality > blob_quality_threshold);
% load centroids
fn = sprintf(fmt, centroids_input_dir, sprintf(config('mat_centroids'), position));
S = load(fn);
centpositions = S.centpositions;
centlabels = S.centlabels;
% make figures
valid_cent = ismember(centlabels, valid);
valid_blob = ismember(bloblabels, valid);
cent_precision = sum(valid_cent) / size(centlabels, 1);
blob_precision = sum(valid_blob) / size(bloblabels, 1);
blob_ok = blobpositions(valid_blob, :);
blob_err = blobpositions(~valid_blob, :);
cent_ok = centpositions(valid_cent, :);
cent_err = centpositions(~valid_cent, :);
disp(num2str(size(centlabels, 1) - sum(valid_cent)));
%disp(['CP precision: ' num2str(blob_precision) ' (' num2str(sum(valid_blob)) '/' num2str(size(bloblabels, 1)) ')' ...
%' Per-pixel precision: ' num2str(cent_precision) ' (' num2str(sum(valid_cent)) '/' num2str(size(centlabels, 1)) ')']);
if position < 2
% bad colors, but what are good ones?
sz = 20;
blue = [0,0,1];
red = [1,0,0];
teal = [0,1,1];
mag = [1,0,1];
figure;
imshow(mmip, [0 255]);
hold on, scatter(blob_ok(:, 1), blob_ok(:, 2), sz, repmat(blue,size(blob_ok,1),1), '+'),
hold on, scatter(blob_err(:, 1), blob_err(:, 2), sz, repmat(mag,size(blob_err,1),1), '+'),
hold on, scatter(cent_ok(:, 1), cent_ok(:, 2), sz, repmat(blue,size(cent_ok,1),1), 'o'),
hold on, scatter(cent_err(:, 1), cent_err(:, 2), sz, repmat(mag,size(cent_err,1),1), 'o');
% do it the slow way
% should probably accumulate all points to be drawn
% in separate matrixes then draw one time rather than for each pair
[closest_indexes, closest_dists] = dsearchn(blobpositions, delaunayn(blobpositions), centpositions);
un = unique(closest_indexes);
[counts, ~] = histc(closest_indexes,un);
ign_err = 0;
ign_ok = 0;
same = 0;
diff = 0;
avg_same = 0;
avg_diff = 0;
for i=1:size(closest_indexes, 1)
hold on;
to_idx = closest_indexes(i);
to = blobpositions(to_idx, :);
c_idx = find(un == to_idx);
% if there is more than one cent pointing to the same blob, only
% draw a line for the closest of them
if counts(c_idx) > 1 && closest_dists(i) ~= min(closest_dists(closest_indexes == to_idx))
% in this case, re-draw the glyph with a different color
if ismember(centlabels(i), valid)
c = 'g';
ign_ok = ign_ok + 1;
else
c = 'r';
ign_err = ign_err + 1;
end
scatter(centpositions(i, 1), centpositions(i, 2), sz, c, 'o');
% continue with out drawing a connecting line
continue;
end
% color the lines according to the correspondence between source
% and destination labels
if bloblabels(to_idx) == centlabels(i)
c = 'g';
same = same + 1;
avg_same = avg_same + closest_dists(i);
else
c = 'r';
diff = diff + 1;
avg_diff = avg_diff + closest_dists(i);
end
from = centpositions(i, :);
plot([from(1,1) to(1,1)], [from(1,2) to(1,2)], c);
end
avg_total = (avg_diff + avg_same)/(diff + same);
avg_diff = avg_diff/diff;
avg_same = avg_same/same;
keyboard;
disp(['Counts: same: ' num2str(same) ' (' num2str(same/(same + diff)) ') different: ' num2str(diff) ' ignored ok: ' num2str(ign_ok) ' ignored err: ' num2str(ign_err)]);
disp(['Average distances: same: ' num2str(avg_same) ' diff: ' num2str(avg_diff) ' total: ' num2str(avg_total)]);
end
end
end