-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_config.m
192 lines (145 loc) · 7.68 KB
/
get_config.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function[config] = get_config()
config = containers.Map;
config('debug') = false;
config('debug_slices') = false;
config('debug_do_registration_final') = config('debug') || true;
config('config_output_filename') = 'config.txt';
% slide name prefix
config('prefix') = 'slideA';
% these are rough; empirically measured.
config('position_overlap_h') = 150; % 175
config('position_overlap_v') = 150; % 140
config('position_row_length') = 4;
config('positions') = 1:16; %5:5; %[5 12 13 14]; %1:16; %14:14;% 1:16; %4:4; %1:16;
% problem with DO alignment on:
%5 12 13 14
config('cycles') = 1:4; % 1:4
config('input_cycles') = {'1st', '2nd', '3rd', '4th'};
% T=1, G=2, C=3, A=4 to correspond with ID_list_BCpanel
% this is the order in which the image channels come,
% i.e. T is the first channel (channel 2), G is the 2nd (channel 3)
config('types') = {'T', 'G', 'C', 'A'};
config('channels') = 2:5;
config('do_dirname') = 'DO';
config('do_channel') = 2;
% output filetype
config('filetype') = 'Tiff';
config('tophat_size') = 4; %10;
config('do_registration_ignore_T') = true; % T channel is the worst! :(
config('do_registration_tophat_size') = 4;
config('do_registration_use_gaussian') = false;
config('do_registration_gaussian_size') = 6;
config('do_registration_gaussian_sigma') = 1;
config('do_registration_use_hitandmiss') = false;
config('do_registration_use_size_threshold') = true;
config('do_registration_size_threshold') = 4;
config('do_registration_cpd_opt') = struct('method','rigid','scale',0,'viz',config('debug'),'max_it',300,'outliers',0.001,'tol',1e-6);
config('do_registration_hitandmiss_before_pointdrift_interval') = [ ...
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 1 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 0 0 0 0 0 0 0 0 0 0 0 -1 ;
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ;
];
config('pointdrift_tophat_radius') = 1;
% only use DoG to clean up images for pointdrift?
config('pointdrift_use_dog') = true;
% find pointdrift points on each base image rather than the MIP
config('pointdrift_points_from_base_images') = false;
% blur the images before applying the quantization?
config('pointdrift_gaussian') = false;
% apply quantization (false = use im2bw)
config('pointdrift_quantize') = true;
config('pointdrift_quantize_classes') = 3;
% FIXME this seems sketchy
config('registration_ignore_rotation') = false;
% which registration type to use
config('registration_type') = 'ransac'; % 'gradient'; %'ransac';
config('cpd_opt') = struct('method','rigid','scale',0,'viz',config('debug'),'max_it',300,'outliers',0.001,'tol',1e-6);
%cpd_opt = struct('method','rigid','scale',0,'viz',1,'max_it',300,'outliers',0.1,'tol',1e-5);
% ransac registration configuration
%config('surf_features_metric_threshold') = 600; % 1000.0 is default
config('surf_features_metric_threshold') = 1000;
config('ransac_estimation_type') = 'similarity'; % 'affine'
% deprecated
% config('register_by') = 'pair'; %'row'; % 'all'
config('slice_registration_iterations') = 100;
% unclear if these are relative to the pixel or the input space
config('slice_registration_steplength_min') = .000005; % 0.00001 is default
config('slice_registration_steplength_max') = 0.02; % 0.0625 is default
config('slice_registration_relaxation_factor') = 0.5; % 0.5 is default
% gradient descent registration configuration
% number of iterations during registration
config('registration_iterations') = 500;
% unclear if these are relative to the pixel or the input space
config('registration_steplength_min') = .000005; % 0.00001 is default
config('registration_steplength_max') = 0.06; % 0.0625 is default
config('registration_relaxation_factor') = 0.5; % 0.5 is default
% the known/valid sequences and their names
taglist = ID_list_BCpanel();
config('taglist') = taglist;
% the list of acceptable sequences
config('valid') = cell2mat(taglist(:, 2));
% the chosen threshold set for this run.
config('thresholds_key') = 'thresholds_tophat';
thresholds = containers.Map;
thresholds('avg') = 80;
thresholds('int') = 200;
thresholds('quality') = 0.31;
thresholds('size') = 50;
% thresholds for 'unmanipulated' images
config('thresholds_raw') = thresholds;
thresholds_tophat = containers.Map;
thresholds_tophat('avg') = 25; %10;
thresholds_tophat('int') = 40; %100;
thresholds_tophat('quality') = 0.475; % 0.52;
thresholds_tophat('size_lower') = 5;
thresholds_tophat('size_upper') = 80; % 50;
% thresholds for tophat-transformed images
config('thresholds_tophat') = thresholds_tophat;
% input dir/file formats
config('dir_input') = '%s_%d_%s';
config('img_infile') = [config('dir_input') '%s_%d_%s_c%d.tif'];
% output
config('dir_prefix') = config('prefix');
config('dir_position') = [config('dir_prefix') '/%d'];
config('dir_cycle') = [config('dir_position') '/%d'];
config('img_cycle') = [config('dir_cycle') '/%s.tif'];
config('img_do') = [config('dir_position') '/do.tif'];
config('img_mip') = [config('dir_position') '/%d-mip.tif'];
config('img_edge') = [config('dir_position') '/edge-%d.tif'];
config('img_dist') = [config('dir_position') '/dist-%d.tif'];
config('img_do_dist') = [config('dir_position') '/dist-do.tif'];
config('mat_sequence') = [config('dir_position') '/sequence.mat'];
% the current threshold map to appropriately name the output file
t = config(config('thresholds_key'));
config('img_filtered') = sprintf('%s/%s', config('dir_position'), ...
sprintf('filtered_avg-%d-int-%d-quality-%f-lsize-%d-usize-%d.tif', ...
t('avg'), t('int'), t('quality'), t('size_lower'), t('size_upper')));
config('mat_centroids') = [config('dir_position') '/centroids.mat'];
config('mat_cellprofiler') = 'DefaultOUT.mat';
% label format for cellprofiler output matrix
config('label_cellprofiler') = 'Intensity_MaxIntensity_%d_%d';
% quality threshold for the cellprofiler blobs
config('threshold_quality_cellprofiler') = 0.5;
% quality steps
config('show_steps_detail_range') = 0:300;
config('show_steps_quality') = 0:0.1:1.0;
config('show_steps_size') = 15:30; % 0:15
config('show_steps_size_upper') = 100:10:150; %10:10:100;
config('show_steps_average') = 80:4:120; %0:4:80;
config('show_steps_intensity') = 0:10:160;
% ROI
config('roi_x') = 500:800;
config('roi_y') = 250:500;
% don't compare these
config('skip') = [5 12 13 14];
end