-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathmatrix_chain_order.py
61 lines (51 loc) · 1.64 KB
/
matrix_chain_order.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
'''
Dynamic Programming
Implementation of matrix Chain Multiplication
Time Complexity: O(n^3)
Space Complexity: O(n^2)
'''
INF = float("inf")
def matrix_chain_order(array):
"""Finds optimal order to multiply matrices
array -- int[]
"""
n = len(array)
matrix = [[0 for x in range(n)] for x in range(n)]
sol = [[0 for x in range(n)] for x in range(n)]
for chain_length in range(2, n):
for a in range(1, n-chain_length+1):
b = a+chain_length-1
matrix[a][b] = INF
for c in range(a, b):
cost = matrix[a][c] + matrix[c+1][b] + array[a-1]*array[c]*array[b]
if cost < matrix[a][b]:
matrix[a][b] = cost
sol[a][b] = c
return matrix, sol
# Print order of matrix with Ai as matrix
def print_optimal_solution(optimal_solution,i,j):
"""Print the solution
optimal_solution -- int[][]
i -- int[]
j -- int[]
"""
if i==j:
print("A" + str(i),end = " ")
else:
print("(", end=" ")
print_optimal_solution(optimal_solution, i, optimal_solution[i][j])
print_optimal_solution(optimal_solution, optimal_solution[i][j]+1, j)
print(")", end=" ")
def main():
"""
Testing for matrix_chain_ordering
"""
array=[30,35,15,5,10,20,25]
length=len(array)
#Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
matrix, optimal_solution = matrix_chain_order(array)
print("No. of Operation required: "+str((matrix[1][length-1])))
print_optimal_solution(optimal_solution,1,length-1)
if __name__ == '__main__':
main()