-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
66 lines (53 loc) · 3.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
from datetime import datetime
import torch.optim as optim
from model import C2R_single, IDCM_NN
from train_model import train_model
from load_data import get_loader, get_loader_feature, get_loader_split_label
from evaluate import fx_calc_map_label, fx_calc_recall
######################################################################
# Start running
def add_weight_decay(net, l2_value, skip_list=()):
decay, no_decay = [], []
for name, param in net.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [{'params': no_decay, 'weight_decay': 0.}, {'params': decay, 'weight_decay': l2_value}]
if __name__ == '__main__':
# environmental setting: setting the following parameters based on your experimental environment.
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# data parameters
MAX_EPOCH = 100
batch_size = 45
lr = 1e-4
betas = (0.5, 0.999)
weight_decay = 0
hyper_parameters = {'cm_tri': 1, 'margin': 50, 'num_per_cls': 3}
print('...Data loading is beginning...')
# the first dataloader is for training, while the next two are for validating
dataloader, cartoon_dataloader, portrait_dataloader, input_data_par = get_loader(dataset_path='/media/ckq/datasets/cartoon/train', batch_size=batch_size, num_per_cls=hyper_parameters['num_per_cls'])
#dataloader, cartoon_dataloader, portrait_dataloader, input_data_par = get_loader_split_label(dataset_path='/media/ckq/datasets/cartoon/train', batch_size=batch_size, num_per_cls=hyper_parameters['num_per_cls'])
#dataloader, cartoon_dataloader, portrait_dataloader = get_loader_feature(cartoon_feature_path='/home/sxfd91307/cartoon_retrieval/features/cartoon_resnet34_adam.hdf5', portrait_feature_path='/home/sxfd91307/cartoon_retrieval/features/portrait_resnet152.hdf5', batch_size=batch_size, num_per_cls=hyper_parameters['num_per_cls'])
print('...Data loading is completed...')
model = C2R_single(input_data_par['num_class']).to(device)
#model.load_state_dict(torch.load('weights/best_2771.pt'))
#model = IDCM_NN().to(device)
params_to_update = add_weight_decay(model, weight_decay)
# params_to_update = list(model.parameters())
# Observe that all parameters are being optimized
optimizer = optim.Adam(params_to_update, lr=lr, betas=betas)
scheduler = None
#optimizer = optim.SGD(params_to_update, lr=0.00001, momentum=0.9, nesterov=True)
#scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[300,400], gamma=0.1)
#scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0)
print('...Training is beginning...')
# Train and evaluate
model, img_acc_hist, loss_hist = train_model(model, dataloader, cartoon_dataloader, portrait_dataloader, hyper_parameters, optimizer, scheduler, device, MAX_EPOCH, 'best1.pt')
print('...Training is completed...')