diff --git a/keras_hub/src/utils/transformers/convert_falcon.py b/keras_hub/src/utils/transformers/convert_falcon.py new file mode 100644 index 0000000000..7168237e44 --- /dev/null +++ b/keras_hub/src/utils/transformers/convert_falcon.py @@ -0,0 +1,60 @@ +import numpy as np + +from keras_hub.src.models.falcon import FalconBackbone +from keras_hub.src.utils.preset_utils import load_json + +backbone_cls = FalconBackbone + + +def convert_backbone_config(transformers_config): + return { + "vocabulary_size": transformers_config["vocab_size"], + "num_layers": transformers_config["num_hidden_layers"], + "num_attention_heads": transformers_config["num_attention_heads"], + "hidden_dim": transformers_config["hidden_size"], + "intermediate_dim": 32 * 4, + } + + +def transpose_and_reshape(x, shape): + return np.reshape(np.transpose(x), shape) + + +def convert_weights(backbone, loader, transformers_config): + # Embeddings + loader.port_weight( + keras_variable=backbone.get_layer("token_embedding").embeddings, + hf_weight_key="word_embeddings.weight", + ) + + for i in range(backbone.num_layers): + decoder_layer = backbone.get_layer(f"transformer_layer_{i}") + + # Norm layer + loader.port_weight( + keras_variable=decoder_layer.input_layernorm.gamma, + hf_weight_key=f"h.{i}.input_layernorm.weight", + ) + + # Attention layers + loader.port_weight( + keras_variable=decoder_layer.attention_layer.output_dense.kernel, + hf_weight_key=f"h.{i}.self_attention.dense.weight", + ) + + loader.port_weight( + keras_variable=decoder_layer.post_attention_layernorm.gamma, + hf_weight_key=f"h.{i}.self_attention.query_key_value.weight", + hook_fn=lambda hf_tensor, keras_shape: np.mean( + np.reshape(hf_tensor, (-1, keras_shape[0])), axis=0 + ), + ) + + +def convert_tokenizer(cls, preset, **kwargs): + tokenizer_data = load_json(preset, "tokenizer.json") + vocab = tokenizer_data["model"]["vocab"] + merges = tokenizer_data["model"].get("merges", None) + + tokenizer_kwargs = {"vocabulary": vocab, "merges": merges} + return cls(**tokenizer_kwargs) diff --git a/keras_hub/src/utils/transformers/convert_falcon_test.py b/keras_hub/src/utils/transformers/convert_falcon_test.py new file mode 100644 index 0000000000..b6153edd5d --- /dev/null +++ b/keras_hub/src/utils/transformers/convert_falcon_test.py @@ -0,0 +1,23 @@ +import pytest + +from keras_hub.src.models.falcon.falcon_backbone import FalconBackbone +from keras_hub.src.models.falcon.falcon_causal_lm import FalconCausalLM +from keras_hub.src.tests.test_case import TestCase + + +class TestTask(TestCase): + @pytest.mark.large + def test_convert_tiny_preset(self): + model = FalconCausalLM.from_preset("hf://tiiuae/falcon-7b") + prompt = "What is your favorite condiment?" + model.generate([prompt], max_length=15) + + @pytest.mark.large + def test_class_detection(self): + model = FalconCausalLM.from_preset("hf://tiiuae/falcon-7b") + self.assertIsInstance(model, FalconCausalLM) + model = FalconBackbone.from_preset( + "hf://tiiuae/falcon-7b", + load_weights=False, + ) + self.assertIsInstance(model, FalconBackbone) diff --git a/keras_hub/src/utils/transformers/preset_loader.py b/keras_hub/src/utils/transformers/preset_loader.py index a3c46f4cf8..3679c31f3d 100644 --- a/keras_hub/src/utils/transformers/preset_loader.py +++ b/keras_hub/src/utils/transformers/preset_loader.py @@ -7,6 +7,7 @@ from keras_hub.src.utils.transformers import convert_bart from keras_hub.src.utils.transformers import convert_bert from keras_hub.src.utils.transformers import convert_distilbert +from keras_hub.src.utils.transformers import convert_falcon from keras_hub.src.utils.transformers import convert_gemma from keras_hub.src.utils.transformers import convert_gpt2 from keras_hub.src.utils.transformers import convert_llama3 @@ -41,6 +42,8 @@ def __init__(self, preset, config): self.converter = convert_pali_gemma elif model_type == "vit": self.converter = convert_vit + elif model_type == "falcon": + self.converter = convert_falcon else: raise ValueError( "KerasHub has no converter for huggingface/transformers models "