-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathranking_data.html
763 lines (678 loc) · 27 KB
/
ranking_data.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Ranking data</title>
<script src="site_libs/header-attrs-2.16/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/sandstone.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-107144798-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-107144798-2');
</script>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-107144798-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-107144798-1');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
details > summary > p:only-child {
display: inline;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark the anchor link active (and if it's in a dropdown, also mark that active)
var dropdown = menuAnchor.closest('li.dropdown');
if (window.bootstrap) { // Bootstrap 4+
menuAnchor.addClass('active');
dropdown.find('> .dropdown-toggle').addClass('active');
} else { // Bootstrap 3
menuAnchor.parent().addClass('active');
dropdown.addClass('active');
}
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">vcfR</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="rlanguage.html">R language</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Tutorial
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="quick_intro.html">A quick introduction</a>
</li>
<li>
<a href="vcf_data.html">VCF data</a>
</li>
<li>
<a href="vcfR_object.html">vcfR objects</a>
</li>
<li>
<a href="how_much_memory.html">How much memory</a>
</li>
<li>
<a href="matrices.html">Extracting matrices</a>
</li>
<li>
<a href="tidy_vcfR.html">Tidy vcfR</a>
</li>
<li>
<a href="chromR_object.html">chromR objects</a>
</li>
<li>
<a href="visualization_1.html">Visualization 1</a>
</li>
<li>
<a href="visualization_2.html">Visualization 2</a>
</li>
<li>
<a href="sequence_coverage.html">Sequence coverage</a>
</li>
<li>
<a href="filtering_data.html">Filtering data</a>
</li>
<li>
<a href="ranking_data.html">Ranking data</a>
</li>
<li>
<a href="windowing.html">Windowing</a>
</li>
<li>
<a href="genetic_differentiation.html">Genetic differentiation</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
GBS class
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="gbs_class.html">GBS class</a>
</li>
<li>
<a href="vcf_data.html">VCF data</a>
</li>
<li>
<a href="extract_data.html">Extract data</a>
</li>
<li>
<a href="depth_plot.html">Depth plot</a>
</li>
<li>
<a href="missing_data.html">Missing data</a>
</li>
<li>
<a href="censoring_data.html">Censoring data</a>
</li>
<li>
<a href="omitting_data.html">Omitting data</a>
</li>
<li>
<a href="apply.html">Apply</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Ploidy
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="ploidy.html">Ploidy</a>
</li>
<li>
<a href="determining_ploidy_1.html">Determining ploidy 1</a>
</li>
<li>
<a href="determining_ploidy_2.html">Determining ploidy 2</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Export
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="export.html">Overview</a>
</li>
<li>
<a href="export_vcfgz.html">Export to *vcf.gz</a>
</li>
<li>
<a href="export_genind_genclone.html">Genind and Genclone</a>
</li>
<li>
<a href="export_genlight_snpclone.html">Genlight and SNPclone</a>
</li>
<li>
<a href="dnabin.html">DNAbin</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
FAQ
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="subset_data_to_1chrom.html">Subset to 1 chromosome</a>
</li>
<li>
<a href="missing_data.html">Missing data</a>
</li>
<li>
<a href="vcf_software.html">VCF software</a>
</li>
<li>
<a href="dip_to_hap.html">Haploidizing diploid data</a>
</li>
<li>
<a href="compiling_vcfR.html">Compiling vcfR</a>
</li>
<li>
<a href="reporting_issue.html">Reporting an issue</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<p>
<center>
<h3>vcfR documentation</h3>
by
<br>
Brian J. Knaus and Niklaus J. Grünwald
</center>
</p>
<div id="header">
<h1 class="title toc-ignore">Ranking data</h1>
</div>
<p>In the vignette ‘Filtering data’ we used thresholds as an attempt to
isolate the high quality fraction of variants from a VCF file. Here we
assign ranks to variants within windows. This information used alone, or
in conjunction with thresholds, may be an effective strategy to identify
high quality variants.</p>
<div id="data" class="section level2">
<h2>Data</h2>
<p>As in other vignettes, we begin by loading the example data.</p>
<pre class="r"><code>library(vcfR)
vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz", package = "pinfsc50")
dna_file <- system.file("extdata", "pinf_sc50.fasta", package = "pinfsc50")
gff_file <- system.file("extdata", "pinf_sc50.gff", package = "pinfsc50")
vcf <- read.vcfR(vcf_file, verbose = FALSE)
dna <- ape::read.dna(dna_file, format = "fasta")
gff <- read.table(gff_file, sep="\t", quote = "")
chrom <- create.chromR(name="Supercontig", vcf=vcf, seq=dna, ann=gff, verbose=FALSE)
#chrom <- masker(chrom, min_DP = 900, max_DP = 1500)
chrom <- proc.chromR(chrom, verbose = TRUE)</code></pre>
<pre><code>## Nucleotide regions complete.</code></pre>
<pre><code>## elapsed time: 0.122</code></pre>
<pre><code>## N regions complete.</code></pre>
<pre><code>## elapsed time: 0.114</code></pre>
<pre><code>## Population summary complete.</code></pre>
<pre><code>## elapsed time: 0.154</code></pre>
<pre><code>## window_init complete.</code></pre>
<pre><code>## elapsed time: 0</code></pre>
<pre><code>## windowize_fasta complete.</code></pre>
<pre><code>## elapsed time: 0.061</code></pre>
<pre><code>## windowize_annotations complete.</code></pre>
<pre><code>## elapsed time: 0.008</code></pre>
<pre><code>## windowize_variants complete.</code></pre>
<pre><code>## elapsed time: 0</code></pre>
</div>
<div id="creating-scores-to-rank" class="section level2">
<h2>Creating scores to rank</h2>
<p>Before we can rank our variants, we need to come up with some sort of
criteria to help us determine if a variant is high or low quality. Once
we have this score we can select the variant with the highest score from
each window. In order to create our vector of scores, let’s remind
ourselves of what data we have.</p>
<pre class="r"><code>head(chrom)</code></pre>
<pre><code>## ***** Class chromR, method head *****
## Name: Supercontig
## Length: 1,042,442
##
## ***** Sample names (chromR) *****
## [1] "BL2009P4_us23" "DDR7602" "IN2009T1_us22" "LBUS5"
## [5] "NL07434" "P10127"
## [1] "..."
## [1] "P17777us22" "P6096" "P7722" "RS2009P1_us8" "blue13"
## [6] "t30-4"
##
## ***** VCF fixed data (chromR) *****
## CHROM POS ID REF ALT QUAL FILTER
## [1,] "Supercontig_1.50" "41" NA "AT" "A" "4784.43" NA
## [2,] "Supercontig_1.50" "136" NA "A" "C" "550.27" NA
## [3,] "Supercontig_1.50" "254" NA "T" "G" "774.44" NA
## [4,] "Supercontig_1.50" "275" NA "A" "G" "714.53" NA
## [5,] "Supercontig_1.50" "386" NA "T" "G" "876.55" NA
## [6,] "Supercontig_1.50" "462" NA "T" "G" "1301.07" NA
## [1] "..."
## CHROM POS ID REF ALT QUAL FILTER
## [22026,] "Supercontig_1.50" "1042176" NA "T" "A" "162.59" NA
## [22027,] "Supercontig_1.50" "1042196" NA "G" "A" "180.86" NA
## [22028,] "Supercontig_1.50" "1042198" NA "T" "G" "60.27" NA
## [22029,] "Supercontig_1.50" "1042303" NA "C" "G" "804.15" NA
## [22030,] "Supercontig_1.50" "1042396" NA "GA" "G" "1578.82" NA
## [22031,] "Supercontig_1.50" "1042398" NA "A" "C" "1587.87" NA
##
## INFO column has been suppressed, first INFO record:
## [1] "AC=32" "AF=1.00"
## [3] "AN=32" "DP=174"
## [5] "FS=0.000" "InbreedingCoeff=-0.0224"
## [7] "MLEAC=32" "MLEAF=1.00"
## [9] "MQ=51.30" "MQ0=0"
## [11] "QD=27.50" "SOR=4.103"
##
## ***** VCF genotype data (chromR) *****
## ***** First 6 columns *********
## FORMAT BL2009P4_us23 DDR7602
## [1,] "GT:AD:DP:GQ:PL" "1|1:0,7:7:21:283,21,0" "1|1:0,6:6:18:243,18,0"
## [2,] "GT:AD:DP:GQ:PL" "0|0:12,0:12:36:0,36,427" "0|0:20,0:20:60:0,60,819"
## [3,] "GT:AD:DP:GQ:PL" "0|0:27,0:27:81:0,81,1117" "0|0:26,0:26:78:0,78,1077"
## [4,] "GT:AD:DP:GQ:PL" "0|0:29,0:29:87:0,87,1243" "0|0:27,0:27:81:0,81,1158"
## [5,] "GT:AD:DP:GQ:PL" "0|0:26,0:26:78:0,78,1034" "0|0:30,0:30:90:0,90,1242"
## [6,] "GT:AD:DP:GQ:PL" "0|0:23,0:23:69:0,69,958" "0|0:36,0:36:99:0,108,1556"
## IN2009T1_us22 LBUS5
## [1,] "1|1:0,8:8:24:324,24,0" "1|1:0,6:6:18:243,18,0"
## [2,] "0|0:16,0:16:48:0,48,650" "0|0:20,0:20:60:0,60,819"
## [3,] "0|0:23,0:23:69:0,69,946" "0|0:26,0:26:78:0,78,1077"
## [4,] "0|0:32,0:32:96:0,96,1299" "0|0:27,0:27:81:0,81,1158"
## [5,] "0|0:41,0:41:99:0,122,1613" "0|0:30,0:30:90:0,90,1242"
## [6,] "0|0:35,0:35:99:0,105,1467" "0|0:36,0:36:99:0,108,1556"
## NL07434
## [1,] "1|1:0,12:12:36:486,36,0"
## [2,] "0|0:28,0:28:84:0,84,948"
## [3,] "0|1:19,20:39:99:565,0,559"
## [4,] "0|1:19,19:38:99:523,0,535"
## [5,] "0|1:22,22:44:99:593,0,651"
## [6,] "0|1:29,25:54:99:723,0,876"
##
## ***** Var info (chromR) *****
## ***** First 6 columns *****
## CHROM POS MQ DP mask n
## 1 Supercontig_1.50 41 51.30 174 TRUE 16
## 2 Supercontig_1.50 136 52.83 390 TRUE 17
## 3 Supercontig_1.50 254 56.79 514 TRUE 17
## 4 Supercontig_1.50 275 57.07 514 TRUE 17
## 5 Supercontig_1.50 386 57.40 509 TRUE 16
## 6 Supercontig_1.50 462 58.89 508 TRUE 17
##
## ***** VCF mask (chromR) *****
## Percent unmasked: 100
##
## ***** End head (chromR) *****</code></pre>
<p>Let’s use the genotype quality (GQ) and sequence depth (DP) from the
VCF genotype information. We can isolate matrices of genotype quality
and sequence depth with the extract.gt function.</p>
<pre class="r"><code>gq <- extract.gt(chrom, element="GQ", as.numeric=TRUE)
dp <- extract.gt(chrom, element="DP", as.numeric=TRUE)</code></pre>
<p>We can visualize these data with box and whisker plots.</p>
<pre class="r"><code>#hist(gq[,1])
par( mar = c(8,4,4,2) )
boxplot(gq, las=2, col=2:5, main="Genotype Quality (GQ)")</code></pre>
<p><img src="ranking_data_files/figure-html/unnamed-chunk-4-1.png" width="672" style="display: block; margin: auto;" /></p>
<pre class="r"><code>dp2 <- dp
dp2[ dp2 == 0 ] <- NA
boxplot(dp2, las=2, col=2:5, main="Sequence Depth (DP)", log="y")
abline(h=10^c(0:4), lty=3, col="#808080")</code></pre>
<p><img src="ranking_data_files/figure-html/unnamed-chunk-4-2.png" width="672" style="display: block; margin: auto;" /></p>
<pre class="r"><code>par( mar = c(5,4,4,2) )</code></pre>
<p>The values for genotype quality appear to range from 0 to 100 with
among sample variability. For example, sample P13626 consists of
variants which are predominantly near 100 while sample P1362 consists of
variants with qualities mostly just below 20. Comparison of the plots
suggests that there is a correlation among sequence depth (DP) and
genotype qualities (GQ) where samples with variants of high sequence
depth have variants of high genotype quality.</p>
<p>Unlike genotype quality, we don’t necessarily want to maximize on
sequence depth. Low depth variants may make obvious poor choices, but
excessive coverage may represent variants from repetitive regions of the
genome. What we really want to optimize on is mean depth, or some other
measure of central tendency. This will require a little mathematical
gymnastics. If we substract from each library its mean (or other measure
of central tendency) it will center the data around zero. We can then
take an absolute value which will cause the data to range from zero to
some infinite number with zero being our optimal value (the measure of
central tendency). The algorithm we’re going to use looks for an optimum
and not a minimum, so if we multiply by negative one our data will range
from negative infinity to zero with zero being optimal. We now have a
measure of depth where the greatest value is the optimal value.</p>
<pre class="r"><code>mids <- apply(dp, MARGIN=2, median, na.rm=TRUE)
dp2 <- sweep(dp, MARGIN=2, mids, FUN="-")
dp2 <- abs(dp2)
dp2 <- -1 * dp2</code></pre>
<pre class="r"><code>par( mar = c(8,4,4,2) )
boxplot(dp2, las=2, col=2:5, main="Sequence Depth (DP)")</code></pre>
<p><img src="ranking_data_files/figure-html/unnamed-chunk-6-1.png" width="672" style="display: block; margin: auto;" /></p>
<pre class="r"><code>par( mar = c(5,4,4,2) )</code></pre>
<p>Before we combine these data we have one more issue we need to
address. In their current state, sequence depth’s range is much greater
than genotype quality. This means that the data are effectively
weighted, if we simply add them together the sequence depth will have a
greater impact on the final metric than will genotype quality. If we are
happy with that then we can proceed. If we would like to equalize each
metric’s contribution to our final measure of quality we’ll want to
normalize the data. The genotype quality data is fairly straight
forward. If we divide each library by 100 (their theoretical maximum)
they will scale from 0 to 1 instead of 0 to 100. For the sequence depth
we can add the absolute value of the minimum value to each library, this
will make all of the data positive. Then we can divide by this value and
our data should then scale from 0 to 1.</p>
<pre class="r"><code>gq2 <- gq/100
range(gq2, na.rm=TRUE)</code></pre>
<pre><code>## [1] 0.00 0.99</code></pre>
<pre class="r"><code>amins <- abs(apply(dp2, MARGIN=2, min, na.rm = TRUE))
dp2 <- sweep(dp2, MARGIN=2, STATS = amins, FUN="+")
dp2 <- sweep(dp2, MARGIN=2, STATS = amins, FUN="/")
range(dp2, na.rm=TRUE)</code></pre>
<pre><code>## [1] 0 1</code></pre>
<p>We now have metrics which are fairly equal. We can add them together
and summarize over variants.</p>
<pre class="r"><code>scores <- dp2 + gq2
scores <- rowSums(scores, na.rm = TRUE)</code></pre>
<p>Check their distribution with a histogram.</p>
<pre class="r"><code>hist(scores, col=4)</code></pre>
<p><img src="ranking_data_files/figure-html/unnamed-chunk-9-1.png" width="672" style="display: block; margin: auto;" /></p>
<p>Once we have scores in hand we can use them to rank our variants.</p>
<pre class="r"><code>chrom <- rank.variants.chromR(chrom, scores)
head([email protected])</code></pre>
<pre><code>## CHROM POS MQ DP mask n Allele_counts He Ne
## 1 Supercontig_1.50 41 51.30 174 TRUE 16 0,32 0.0000000 1.000000
## 2 Supercontig_1.50 136 52.83 390 TRUE 17 32,2 0.1107266 1.124514
## 3 Supercontig_1.50 254 56.79 514 TRUE 17 31,3 0.1608997 1.191753
## 4 Supercontig_1.50 275 57.07 514 TRUE 17 31,3 0.1608997 1.191753
## 5 Supercontig_1.50 386 57.40 509 TRUE 16 29,3 0.1699219 1.204706
## 6 Supercontig_1.50 462 58.89 508 TRUE 17 31,3 0.1608997 1.191753
## window_number rank
## 1 0 16
## 2 0 15
## 3 0 11
## 4 0 10
## 5 0 14
## 6 0 6</code></pre>
<p>This creates a vector of window numbers and rank within each window
and adds them to the var.info slot of the chromR object. We can take a
look at them bay calling this directly.</p>
<pre class="r"><code>head([email protected][,c('POS', 'MQ', 'DP', 'window_number', 'rank')])</code></pre>
<pre><code>## POS MQ DP window_number rank
## 1 41 51.30 174 0 16
## 2 136 52.83 390 0 15
## 3 254 56.79 514 0 11
## 4 275 57.07 514 0 10
## 5 386 57.40 509 0 14
## 6 462 58.89 508 0 6</code></pre>
<p>We can use this information to create our mask.</p>
<pre class="r"><code>[email protected]$mask[[email protected]$rank > 1] <- FALSE</code></pre>
<p>And plot.</p>
<pre class="r"><code>chromoqc(chrom, dp.alpha='66')</code></pre>
<p><img src="ranking_data_files/figure-html/unnamed-chunk-13-1.png" width="672" /></p>
<p>This looks pretty good. But we still have variants with rather high
or low depth. We can combine the use of masker, which we explored in the
vignette ‘Filtering data’ with our ranks. We’ll first call masker, which
will reset our mask, and then censor this mask based on rank.</p>
<pre class="r"><code>chrom <- masker( chrom, min_QUAL=0, min_DP=350, max_DP=650, min_MQ=59.5, max_MQ=60.5 )
[email protected]$mask[ [email protected]$rank > 1 ] <- FALSE</code></pre>
<p>Then replot.</p>
<pre class="r"><code>chromoqc(chrom, dp.alpha='66')</code></pre>
<p><img src="ranking_data_files/figure-html/unnamed-chunk-15-1.png" width="672" /></p>
</div>
<div id="conclusion" class="section level2">
<h2>Conclusion</h2>
<p>This provides another tool to help filter variant files to the
highest quality fraction. In a previous vignette we used the function
masker() to filter the data. Here we’ve created a composite score which
we’d like to maximize and ranked the variants based on theis score
within windows. A strength of this method is that by using windows we’re
able to evenly space our variants accross a chromosome. Choosing the
best, or several best, variants per window does not necessarily guaranty
high quality variants. If all of the variants in a window are of low
quality then the best of these may still be poor quality. Some some
additional processing may be necessary. With these tools it is hoped
that an individual can rapidly explore their data and determine a method
to extract the highest quality variants so that downstream analyses will
be of the highest quality possible.</p>
</div>
<center>
<hr class="style1">
<p>Copyright © 2017, 2018 Brian J. Knaus. All rights reserved.</p>
<p>USDA Agricultural Research Service, Horticultural Crops Research Lab.</p>
</center>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>