-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSpatialFullConvolutionMap.lua
58 lines (48 loc) · 1.79 KB
/
SpatialFullConvolutionMap.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
local SpatialFullConvolutionMap, parent = torch.class('nn.SpatialFullConvolutionMap', 'nn.Module')
function SpatialFullConvolutionMap:__init(conMatrix, kW, kH, dW, dH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.connTable = conMatrix
self.nInputPlane = self.connTable:select(2,1):max()
self.nOutputPlane = self.connTable:select(2,2):max()
self.weight = torch.Tensor(self.connTable:size(1), kH, kW)
self.gradWeight = torch.Tensor(self.connTable:size(1), kH, kW)
self:reset()
end
function SpatialFullConvolutionMap:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
local ninp = torch.Tensor(self.nOutputPlane):zero()
for i=1,self.connTable:size(1) do ninp[self.connTable[i][2]] = ninp[self.connTable[i][2]]+1 end
for k=1,self.connTable:size(1) do
stdv = 1/math.sqrt(self.kW*self.kH*ninp[self.connTable[k][2]])
self.weight:select(1,k):apply(function() return torch.uniform(-stdv,stdv) end)
end
end
end
function SpatialFullConvolutionMap:updateOutput(input)
input.nn.SpatialFullConvolutionMap_updateOutput(self, input)
return self.output
end
function SpatialFullConvolutionMap:updateGradInput(input, gradOutput)
input.nn.SpatialFullConvolutionMap_updateGradInput(self, input, gradOutput)
return self.gradInput
end
function SpatialFullConvolutionMap:accGradParameters(input, gradOutput, scale)
return input.nn.SpatialFullConvolutionMap_accGradParameters(self, input, gradOutput, scale)
end
function SpatialFullConvolutionMap:decayParameters(decay)
self.weight:add(-decay, self.weight)
end