-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathConvPsd.lua
46 lines (37 loc) · 1.67 KB
/
ConvPsd.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
local ConvPSD, parent = torch.class('unsup.ConvPSD','unsup.PSD')
-- conntable : A connection table (ref nn.SpatialConvolutionMap)
-- kw, kh : width, height of convolutional kernel
-- iw, ih : width, height of input patches
-- lambda : sparsity coefficient
-- beta : prediction coefficient
-- params : optim.FistaLS parameters
function ConvPSD:__init(conntable, kw, kh, iw, ih, lambda, beta, params)
-- prediction weight
self.beta = beta
local decodertable = conntable:clone()
decodertable:select(2,1):copy(conntable:select(2,2))
decodertable:select(2,2):copy(conntable:select(2,1))
local outputFeatures = conntable:select(2,2):max()
-- decoder is L1 solution
self.decoder = unsup.SpatialConvFistaL1(decodertable, kw, kh, iw, ih, lambda, params)
-- encoder
params = params or {}
self.params = params
self.params.encoderType = params.encoderType or 'linear'
if params.encoderType == 'linear' then
self.encoder = nn.SpatialConvolutionMap(conntable, kw, kh, 1, 1)
elseif params.encoderType == 'tanh' then
self.encoder = nn.Sequential()
self.encoder:add(nn.SpatialConvolutionMap(conntable, kw, kh, 1, 1))
self.encoder:add(nn.Tanh())
self.encoder:add(nn.Diag(outputFeatures))
elseif params.encoderType == 'tanh_shrink' then
self.encoder = nn.Sequential()
self.encoder:add(nn.SpatialConvolutionMap(conntable, kw, kh, 1, 1))
self.encoder:add(nn.TanhShrink())
self.encoder:add(nn.Diag(outputFeatures))
else
error('params.encoderType unknown " ' .. params.encoderType)
end
parent.__init(self, self.encoder, self.decoder, beta, params)
end