-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathLinearPsd.lua
39 lines (32 loc) · 1.27 KB
/
LinearPsd.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
local LinearPSD, parent = torch.class('unsup.LinearPSD','unsup.PSD')
-- inputSize : size of input
-- outputSize : size of code
-- lambda : sparsity coefficient
-- beta : prediction coefficient
-- params : optim.FistaLS parameters
function LinearPSD:__init(inputSize, outputSize, lambda, beta, params)
-- prediction weight
self.beta = beta
-- decoder is L1 solution
self.decoder = unsup.LinearFistaL1(inputSize, outputSize, lambda, params)
-- encoder
params = params or {}
self.params = params
self.params.encoderType = params.encoderType or 'linear'
if params.encoderType == 'linear' then
self.encoder = nn.Linear(inputSize,outputSize)
elseif params.encoderType == 'tanh' then
self.encoder = nn.Sequential()
self.encoder:add(nn.Linear(inputSize,outputSize))
self.encoder:add(nn.Tanh())
self.encoder:add(nn.Diag(outputSize))
elseif params.encoderType == 'tanh_shrink' then
self.encoder = nn.Sequential()
self.encoder:add(nn.Linear(inputSize,outputSize))
self.encoder:add(nn.TanhShrink())
self.encoder:add(nn.Diag(outputSize))
else
error('params.encoderType unknown " ' .. params.encoderType)
end
parent.__init(self, self.encoder, self.decoder, self.beta, self.params)
end