-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathkmeans.lua
105 lines (90 loc) · 2.88 KB
/
kmeans.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
--
-- The k-means algorithm.
--
-- > x: is supposed to be an MxN matrix, where M is the nb of samples and each sample is N-dim
-- > k: is the number of kernels
-- > niter: the number of iterations
-- > batchsize: the batch size [large is good, to parallelize matrix multiplications]
-- > callback: optional callback, at each iteration end
-- > verbose: prints a progress bar...
--
-- < returns the k means (centroids) + the counts per centroid
--
function unsup.kmeans(x, k, niter, batchsize, callback, verbose)
-- args
local help = 'centroids,count = unsup.kmeans(Tensor(npoints,dim), k [, niter, batchsize, callback, verbose])'
x = x or error('missing argument: ' .. help)
k = k or error('missing argument: ' .. help)
niter = niter or 1
batchsize = batchsize or math.min(1000, (#x)[1])
-- resize data
local k_size = x:size()
k_size[1] = k
if x:dim() > 2 then
x = x:reshape(x:size(1), x:nElement()/x:size(1))
end
-- some shortcuts
local sum = torch.sum
local max = torch.max
local pow = torch.pow
-- dims
local nsamples = (#x)[1]
local ndims = (#x)[2]
-- initialize means
local x2 = sum(pow(x,2),2)
local centroids = x.new(k,ndims):normal()
for i = 1,k do
centroids[i]:div(centroids[i]:norm())
end
local totalcounts = x.new(k):zero()
-- callback?
if callback then callback(0,centroids:reshape(k_size),totalcounts) end
-- do niter iterations
for i = 1,niter do
-- progress
if verbose then xlua.progress(i,niter) end
-- sums of squares
local c2 = sum(pow(centroids,2),2)*0.5
-- init some variables
local summation = x.new(k,ndims):zero()
local counts = x.new(k):zero()
local loss = 0
-- process batch
for i = 1,nsamples,batchsize do
-- indices
local lasti = math.min(i+batchsize-1,nsamples)
local m = lasti - i + 1
-- k-means step, on minibatch
local batch = x[{ {i,lasti},{} }]
local batch_t = batch:t()
local tmp = centroids * batch_t
for n = 1,(#batch)[1] do
tmp[{ {},n }]:add(-1,c2)
end
local val,labels = max(tmp,1)
loss = loss + sum(x2[{ {i,lasti} }]*0.5 - val:t())
-- count examplars per template
local S = x.new(m,k):zero()
for i = 1,(#labels)[2] do
S[i][labels[1][i]] = 1
end
summation:add( S:t() * batch )
counts:add( sum(S,1) )
end
-- normalize
for i = 1,k do
if counts[i] ~= 0 then
centroids[i] = summation[i]:div(counts[i])
end
end
-- total counts
totalcounts:add(counts)
-- callback?
if callback then
local ret = callback(i,centroids:reshape(k_size),totalcounts)
if ret then break end
end
end
-- done
return centroids:reshape(k_size),totalcounts
end