forked from ant-research/CoDeF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
executable file
·51 lines (34 loc) · 1.94 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from torch import nn
import torch
import torchvision
from einops import rearrange, reduce, repeat
class MSELoss(nn.Module):
def __init__(self, coef=1):
super().__init__()
self.coef = coef
self.loss = nn.MSELoss(reduction='mean')
def forward(self, inputs, targets):
loss = self.loss(inputs, targets)
return self.coef * loss
def rgb_to_gray(image):
gray_image = (0.299 * image[:, 0, :, :] + 0.587 * image[:, 1, :, :] +
0.114 * image[:, 2, :, :])
gray_image = gray_image.unsqueeze(1)
return gray_image
def compute_gradient_loss(pred, gt, mask):
assert pred.shape == gt.shape, "a and b must have the same shape"
pred = rgb_to_gray(pred)
gt = rgb_to_gray(gt)
sobel_kernel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=pred.dtype, device=pred.device)
sobel_kernel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=pred.dtype, device=pred.device)
gradient_a_x = torch.nn.functional.conv2d(pred.repeat(1,3,1,1), sobel_kernel_x.unsqueeze(0).unsqueeze(0).repeat(1,3,1,1), padding=1)/3
gradient_a_y = torch.nn.functional.conv2d(pred.repeat(1,3,1,1), sobel_kernel_y.unsqueeze(0).unsqueeze(0).repeat(1,3,1,1), padding=1)/3
# gradient_a_magnitude = torch.sqrt(gradient_a_x ** 2 + gradient_a_y ** 2)
gradient_b_x = torch.nn.functional.conv2d(gt.repeat(1,3,1,1), sobel_kernel_x.unsqueeze(0).unsqueeze(0).repeat(1,3,1,1), padding=1)/3
gradient_b_y = torch.nn.functional.conv2d(gt.repeat(1,3,1,1), sobel_kernel_y.unsqueeze(0).unsqueeze(0).repeat(1,3,1,1), padding=1)/3
# gradient_b_magnitude = torch.sqrt(gradient_b_x ** 2 + gradient_b_y ** 2)
pred_grad = torch.cat([gradient_a_x, gradient_a_y], dim=1)
gt_grad = torch.cat([gradient_b_x, gradient_b_y], dim=1)
gradient_difference = torch.abs(pred_grad - gt_grad).mean(dim=1,keepdim=True)[mask].sum()/(mask.sum()+1e-8)
return gradient_difference
loss_dict = {'mse': MSELoss}