-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseattle_library_intent_weighted_loss_report.txt
836 lines (557 loc) · 23.7 KB
/
seattle_library_intent_weighted_loss_report.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
ubuntu@ip-172-31-88-141:~/efs/Capstone/Fall/AI_Guide_Dog$ python main.py
dict_keys(['2022-07-12T17:12:05', '2022-07-12T17:02:16', '2022-07-12T17:54:18', '2022-07-12T16:52:14', '2022-07-12T17:38:36', '2022-07-12T16:44:21', '2022-07-12T17:08:12', '2022-07-12T17:42:18', '2022-07-12T17:46:01', '2022-07-12T17:25:48', '2022-07-12T17:15:22', '2022-07-12T17:52:00', '2022-07-12T16:34:07', '2022-07-12T17:32:15'])
Test files ['2022-07-12T17:12:05', '2022-07-12T17:54:18', '2022-07-12T17:02:16']
['2022-07-12T16:34:07', '2022-07-12T17:46:01', '2022-07-12T17:08:12', '2022-07-12T16:52:14', '2022-07-12T17:42:18', '2022-07-12T17:25:48', '2022-07-12T17:38:36', '2022-07-12T17:15:22', '2022-07-12T16:44:21', '2022-07-12T17:32:15', '2022-07-12T17:52:00']
['2022-07-12T17:12:05', '2022-07-12T17:54:18', '2022-07-12T17:02:16']
True
Label counts before balancing: [1644, 1790, 5710]
ConvLSTMModel(
(convlstm): ConvLSTM(
(cell_list): ModuleList(
(0): ConvLSTMCell(
(conv): Conv2d(259, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
(linear): Linear(in_features=1048576, out_features=3, bias=True)
)
Epoch 1/20: Train Acc 34.0223%, Train Loss 969.9297, Learning Rate 0.0099
248it [02:17, 1.80it/s]
Validation: 24.9243%
Taining set stats
[[1222 1121 702]
[1117 1277 655]
[1228 1210 612]]
Classification Report
precision recall f1-score support
0 0.34 0.40 0.37 3045
1 0.35 0.42 0.38 3049
2 0.31 0.20 0.24 3050
accuracy 0.34 9144
macro avg 0.34 0.34 0.33 9144
weighted avg 0.34 0.34 0.33 9144
Validation set stats
[[ 266 10 15]
[ 292 75 42]
[1016 113 153]]
Classification Report
precision recall f1-score support
0 0.17 0.91 0.29 291
1 0.38 0.18 0.25 409
2 0.73 0.12 0.21 1282
accuracy 0.25 1982
macro avg 0.43 0.41 0.25 1982
weighted avg 0.57 0.25 0.23 1982
Epoch 2/20: Train Acc 39.6982%, Train Loss 614.9863, Learning Rate 0.0098
248it [02:17, 1.80it/s]
Validation: 38.4460%
Taining set stats
[[1333 985 662]
[ 967 1559 586]
[1255 1059 738]]
Classification Report
precision recall f1-score support
0 0.37 0.45 0.41 2980
1 0.43 0.50 0.46 3112
2 0.37 0.24 0.29 3052
accuracy 0.40 9144
macro avg 0.39 0.40 0.39 9144
weighted avg 0.39 0.40 0.39 9144
Validation set stats
[[ 27 212 52]
[ 13 319 77]
[104 762 416]]
Classification Report
precision recall f1-score support
0 0.19 0.09 0.12 291
1 0.25 0.78 0.37 409
2 0.76 0.32 0.46 1282
accuracy 0.38 1982
macro avg 0.40 0.40 0.32 1982
weighted avg 0.57 0.38 0.39 1982
Epoch 3/20: Train Acc 43.3290%, Train Loss 545.3319, Learning Rate 0.0095
248it [02:16, 1.81it/s]
Validation: 20.9384%
Taining set stats
[[1521 897 663]
[ 892 1648 530]
[1215 985 793]]
Classification Report
precision recall f1-score support
0 0.42 0.49 0.45 3081
1 0.47 0.54 0.50 3070
2 0.40 0.26 0.32 2993
accuracy 0.43 9144
macro avg 0.43 0.43 0.42 9144
weighted avg 0.43 0.43 0.42 9144
Validation set stats
[[ 0 291 0]
[ 0 406 3]
[ 0 1273 9]]
Classification Report
precision recall f1-score support
0 0.00 0.00 0.00 291
1 0.21 0.99 0.34 409
2 0.75 0.01 0.01 1282
accuracy 0.21 1982
macro avg 0.32 0.33 0.12 1982
weighted avg 0.53 0.21 0.08 1982
Epoch 4/20: Train Acc 43.9086%, Train Loss 663.2099, Learning Rate 0.0090
248it [02:15, 1.83it/s]
Validation: 59.5863%
Taining set stats
[[1594 882 630]
[ 913 1582 542]
[1132 1030 839]]
Classification Report
precision recall f1-score support
0 0.44 0.51 0.47 3106
1 0.45 0.52 0.48 3037
2 0.42 0.28 0.33 3001
accuracy 0.44 9144
macro avg 0.44 0.44 0.43 9144
weighted avg 0.44 0.44 0.43 9144
Validation set stats
[[ 38 0 253]
[ 32 0 377]
[ 139 0 1143]]
Classification Report
precision recall f1-score support
0 0.18 0.13 0.15 291
1 0.00 0.00 0.00 409
2 0.64 0.89 0.75 1282
accuracy 0.60 1982
macro avg 0.28 0.34 0.30 1982
weighted avg 0.44 0.60 0.51 1982
Epoch 5/20: Train Acc 38.7139%, Train Loss 537.0837, Learning Rate 0.0085
248it [02:15, 1.83it/s]
Validation: 20.9384%
Taining set stats
[[1364 961 683]
[ 976 1469 610]
[1242 1132 707]]
Classification Report
precision recall f1-score support
0 0.38 0.45 0.41 3008
1 0.41 0.48 0.44 3055
2 0.35 0.23 0.28 3081
accuracy 0.39 9144
macro avg 0.38 0.39 0.38 9144
weighted avg 0.38 0.39 0.38 9144
Validation set stats
[[ 28 263 0]
[ 22 387 0]
[ 138 1144 0]]
Classification Report
precision recall f1-score support
0 0.15 0.10 0.12 291
1 0.22 0.95 0.35 409
2 0.00 0.00 0.00 1282
accuracy 0.21 1982
macro avg 0.12 0.35 0.16 1982
weighted avg 0.07 0.21 0.09 1982
Epoch 6/20: Train Acc 42.8040%, Train Loss 382.9392, Learning Rate 0.0079
248it [02:15, 1.83it/s]
Validation: 22.9566%
Taining set stats
[[1515 897 629]
[ 872 1543 567]
[1219 1046 856]]
Classification Report
precision recall f1-score support
0 0.42 0.50 0.46 3041
1 0.44 0.52 0.48 2982
2 0.42 0.27 0.33 3121
accuracy 0.43 9144
macro avg 0.43 0.43 0.42 9144
weighted avg 0.43 0.43 0.42 9144
Validation set stats
[[240 51 0]
[261 136 12]
[915 288 79]]
Classification Report
precision recall f1-score support
0 0.17 0.82 0.28 291
1 0.29 0.33 0.31 409
2 0.87 0.06 0.12 1282
accuracy 0.23 1982
macro avg 0.44 0.41 0.23 1982
weighted avg 0.65 0.23 0.18 1982
Epoch 7/20: Train Acc 43.4930%, Train Loss 285.3142, Learning Rate 0.0073
248it [02:15, 1.83it/s]
Validation: 23.4612%
Taining set stats
[[1515 823 668]
[ 842 1650 571]
[1197 1066 812]]
Classification Report
precision recall f1-score support
0 0.43 0.50 0.46 3006
1 0.47 0.54 0.50 3063
2 0.40 0.26 0.32 3075
accuracy 0.43 9144
macro avg 0.43 0.44 0.43 9144
weighted avg 0.43 0.43 0.43 9144
Validation set stats
[[ 22 268 1]
[ 15 381 13]
[ 89 1131 62]]
Classification Report
precision recall f1-score support
0 0.17 0.08 0.11 291
1 0.21 0.93 0.35 409
2 0.82 0.05 0.09 1282
accuracy 0.23 1982
macro avg 0.40 0.35 0.18 1982
weighted avg 0.60 0.23 0.15 1982
Epoch 8/20: Train Acc 45.0569%, Train Loss 254.2259, Learning Rate 0.0065
248it [02:15, 1.82it/s]
Validation: 35.6206%
Taining set stats
[[1662 848 612]
[ 871 1596 545]
[1115 1033 862]]
Classification Report
precision recall f1-score support
0 0.46 0.53 0.49 3122
1 0.46 0.53 0.49 3012
2 0.43 0.29 0.34 3010
accuracy 0.45 9144
macro avg 0.45 0.45 0.44 9144
weighted avg 0.45 0.45 0.44 9144
Validation set stats
[[ 0 262 29]
[ 0 353 56]
[ 0 929 353]]
Classification Report
precision recall f1-score support
0 0.00 0.00 0.00 291
1 0.23 0.86 0.36 409
2 0.81 0.28 0.41 1282
accuracy 0.36 1982
macro avg 0.34 0.38 0.26 1982
weighted avg 0.57 0.36 0.34 1982
Epoch 9/20: Train Acc 43.8430%, Train Loss 246.7635, Learning Rate 0.0058
248it [02:15, 1.82it/s]
Validation: 37.6892%
Taining set stats
[[1544 893 629]
[ 902 1614 538]
[1161 1012 851]]
Classification Report
precision recall f1-score support
0 0.43 0.50 0.46 3066
1 0.46 0.53 0.49 3054
2 0.42 0.28 0.34 3024
accuracy 0.44 9144
macro avg 0.44 0.44 0.43 9144
weighted avg 0.44 0.44 0.43 9144
Validation set stats
[[233 0 58]
[244 0 165]
[757 11 514]]
Classification Report
precision recall f1-score support
0 0.19 0.80 0.31 291
1 0.00 0.00 0.00 409
2 0.70 0.40 0.51 1282
accuracy 0.38 1982
macro avg 0.30 0.40 0.27 1982
weighted avg 0.48 0.38 0.37 1982
Epoch 10/20: Train Acc 47.1238%, Train Loss 184.5033, Learning Rate 0.0050
248it [02:16, 1.82it/s]
Validation: 58.1736%
Taining set stats
[[1598 789 612]
[ 808 1820 525]
[1103 998 891]]
Classification Report
precision recall f1-score support
0 0.46 0.53 0.49 2999
1 0.50 0.58 0.54 3153
2 0.44 0.30 0.35 2992
accuracy 0.47 9144
macro avg 0.47 0.47 0.46 9144
weighted avg 0.47 0.47 0.46 9144
Validation set stats
[[ 32 6 253]
[ 48 94 267]
[ 133 122 1027]]
Classification Report
precision recall f1-score support
0 0.15 0.11 0.13 291
1 0.42 0.23 0.30 409
2 0.66 0.80 0.73 1282
accuracy 0.58 1982
macro avg 0.41 0.38 0.38 1982
weighted avg 0.54 0.58 0.55 1982
Epoch 11/20: Train Acc 48.0206%, Train Loss 174.0173, Learning Rate 0.0042
248it [02:17, 1.81it/s]
Validation: 62.8658%
Taining set stats
[[1705 771 584]
[ 783 1758 533]
[1084 998 928]]
Classification Report
precision recall f1-score support
0 0.48 0.56 0.51 3060
1 0.50 0.57 0.53 3074
2 0.45 0.31 0.37 3010
accuracy 0.48 9144
macro avg 0.48 0.48 0.47 9144
weighted avg 0.48 0.48 0.47 9144
Validation set stats
[[ 0 32 259]
[ 0 134 275]
[ 0 170 1112]]
Classification Report
precision recall f1-score support
0 0.00 0.00 0.00 291
1 0.40 0.33 0.36 409
2 0.68 0.87 0.76 1282
accuracy 0.63 1982
macro avg 0.36 0.40 0.37 1982
weighted avg 0.52 0.63 0.57 1982
Epoch 12/20: Train Acc 49.5844%, Train Loss 140.9170, Learning Rate 0.0035
248it [02:17, 1.80it/s]
Validation: 20.9889%
Taining set stats
[[1767 669 623]
[ 700 1760 510]
[1126 982 1007]]
Classification Report
precision recall f1-score support
0 0.49 0.58 0.53 3059
1 0.52 0.59 0.55 2970
2 0.47 0.32 0.38 3115
accuracy 0.50 9144
macro avg 0.49 0.50 0.49 9144
weighted avg 0.49 0.50 0.49 9144
Validation set stats
[[ 46 244 1]
[ 69 329 11]
[253 988 41]]
Classification Report
precision recall f1-score support
0 0.12 0.16 0.14 291
1 0.21 0.80 0.33 409
2 0.77 0.03 0.06 1282
accuracy 0.21 1982
macro avg 0.37 0.33 0.18 1982
weighted avg 0.56 0.21 0.13 1982
Epoch 13/20: Train Acc 52.3294%, Train Loss 106.0132, Learning Rate 0.0027
248it [02:17, 1.80it/s]
Validation: 54.1372%
Taining set stats
[[1838 662 570]
[ 666 1856 485]
[1068 908 1091]]
Classification Report
precision recall f1-score support
0 0.51 0.60 0.55 3070
1 0.54 0.62 0.58 3007
2 0.51 0.36 0.42 3067
accuracy 0.52 9144
macro avg 0.52 0.52 0.52 9144
weighted avg 0.52 0.52 0.52 9144
Validation set stats
[[ 2 90 199]
[ 5 209 195]
[ 39 381 862]]
Classification Report
precision recall f1-score support
0 0.04 0.01 0.01 291
1 0.31 0.51 0.38 409
2 0.69 0.67 0.68 1282
accuracy 0.54 1982
macro avg 0.35 0.40 0.36 1982
weighted avg 0.51 0.54 0.52 1982
Epoch 14/20: Train Acc 53.0402%, Train Loss 94.4181, Learning Rate 0.0021
248it [02:17, 1.80it/s]
Validation: 29.6670%
Taining set stats
[[1752 650 560]
[ 671 1994 478]
[1021 914 1104]]
Classification Report
precision recall f1-score support
0 0.51 0.59 0.55 2962
1 0.56 0.63 0.60 3143
2 0.52 0.36 0.43 3039
accuracy 0.53 9144
macro avg 0.53 0.53 0.52 9144
weighted avg 0.53 0.53 0.52 9144
Validation set stats
[[248 25 18]
[257 127 25]
[924 145 213]]
Classification Report
precision recall f1-score support
0 0.17 0.85 0.29 291
1 0.43 0.31 0.36 409
2 0.83 0.17 0.28 1282
accuracy 0.30 1982
macro avg 0.48 0.44 0.31 1982
weighted avg 0.65 0.30 0.30 1982
Epoch 15/20: Train Acc 55.6102%, Train Loss 64.8470, Learning Rate 0.0015
248it [02:17, 1.80it/s]
Validation: 38.7487%
Taining set stats
[[1923 557 574]
[ 576 1991 445]
[1037 870 1171]]
Classification Report
precision recall f1-score support
0 0.54 0.63 0.58 3054
1 0.58 0.66 0.62 3012
2 0.53 0.38 0.44 3078
accuracy 0.56 9144
macro avg 0.55 0.56 0.55 9144
weighted avg 0.55 0.56 0.55 9144
Validation set stats
[[ 3 246 42]
[ 2 335 72]
[ 53 799 430]]
Classification Report
precision recall f1-score support
0 0.05 0.01 0.02 291
1 0.24 0.82 0.37 409
2 0.79 0.34 0.47 1282
accuracy 0.39 1982
macro avg 0.36 0.39 0.29 1982
weighted avg 0.57 0.39 0.38 1982
Epoch 16/20: Train Acc 57.5569%, Train Loss 45.7370, Learning Rate 0.0010
248it [02:18, 1.80it/s]
Validation: 59.3845%
Taining set stats
[[1994 529 539]
[ 543 2038 438]
[1006 826 1231]]
Classification Report
precision recall f1-score support
0 0.56 0.65 0.60 3062
1 0.60 0.68 0.64 3019
2 0.56 0.40 0.47 3063
accuracy 0.58 9144
macro avg 0.57 0.58 0.57 9144
weighted avg 0.57 0.58 0.57 9144
Validation set stats
[[ 40 15 236]
[ 46 46 317]
[ 160 31 1091]]
Classification Report
precision recall f1-score support
0 0.16 0.14 0.15 291
1 0.50 0.11 0.18 409
2 0.66 0.85 0.75 1282
accuracy 0.59 1982
macro avg 0.44 0.37 0.36 1982
weighted avg 0.56 0.59 0.54 1982
Epoch 17/20: Train Acc 60.4112%, Train Loss 32.4594, Learning Rate 0.0005
248it [02:18, 1.79it/s]
Validation: 43.7941%
Taining set stats
[[2094 517 464]
[ 469 2036 466]
[ 956 748 1394]]
Classification Report
precision recall f1-score support
0 0.60 0.68 0.64 3075
1 0.62 0.69 0.65 2971
2 0.60 0.45 0.51 3098
accuracy 0.60 9144
macro avg 0.60 0.61 0.60 9144
weighted avg 0.60 0.60 0.60 9144
Validation set stats
[[164 70 57]
[136 183 90]
[492 269 521]]
Classification Report
precision recall f1-score support
0 0.21 0.56 0.30 291
1 0.35 0.45 0.39 409
2 0.78 0.41 0.53 1282
accuracy 0.44 1982
macro avg 0.45 0.47 0.41 1982
weighted avg 0.61 0.44 0.47 1982
Epoch 18/20: Train Acc 66.7323%, Train Loss 16.0215, Learning Rate 0.0002
248it [02:18, 1.79it/s]
Validation: 33.0474%
Taining set stats
[[2205 374 408]
[ 397 2302 368]
[ 783 712 1595]]
Classification Report
precision recall f1-score support
0 0.65 0.74 0.69 2987
1 0.68 0.75 0.71 3067
2 0.67 0.52 0.58 3090
accuracy 0.67 9144
macro avg 0.67 0.67 0.66 9144
weighted avg 0.67 0.67 0.66 9144
Validation set stats
[[ 52 222 17]
[ 41 325 43]
[213 791 278]]
Classification Report
precision recall f1-score support
0 0.17 0.18 0.17 291
1 0.24 0.79 0.37 409
2 0.82 0.22 0.34 1282
accuracy 0.33 1982
macro avg 0.41 0.40 0.30 1982
weighted avg 0.61 0.33 0.32 1982
Epoch 19/20: Train Acc 72.9221%, Train Loss 8.8555, Learning Rate 0.0001
248it [02:18, 1.79it/s]
Validation: 51.3118%
Taining set stats
[[2425 303 317]
[ 320 2521 308]
[ 616 612 1722]]
Classification Report
precision recall f1-score support
0 0.72 0.80 0.76 3045
1 0.73 0.80 0.77 3149
2 0.73 0.58 0.65 2950
accuracy 0.73 9144
macro avg 0.73 0.73 0.72 9144
weighted avg 0.73 0.73 0.73 9144
Validation set stats
[[130 93 68]
[ 91 197 121]
[316 276 690]]
Classification Report
precision recall f1-score support
0 0.24 0.45 0.31 291
1 0.35 0.48 0.40 409
2 0.78 0.54 0.64 1282
accuracy 0.51 1982
macro avg 0.46 0.49 0.45 1982
weighted avg 0.62 0.51 0.54 1982
Epoch 20/20: Train Acc 77.7231%, Train Loss 4.8682, Learning Rate 0.0000
248it [02:18, 1.79it/s]
Validation: 52.5227%
Taining set stats
[[2532 186 277]
[ 212 2579 260]
[ 572 530 1996]]
Classification Report
precision recall f1-score support
0 0.76 0.85 0.80 2995
1 0.78 0.85 0.81 3051
2 0.79 0.64 0.71 3098
accuracy 0.78 9144
macro avg 0.78 0.78 0.77 9144
weighted avg 0.78 0.78 0.77 9144
Validation set stats
[[112 96 83]
[ 79 190 140]
[258 285 739]]
Classification Report
precision recall f1-score support
0 0.25 0.38 0.30 291
1 0.33 0.46 0.39 409
2 0.77 0.58 0.66 1282
accuracy 0.53 1982
macro avg 0.45 0.48 0.45 1982
weighted avg 0.60 0.53 0.55 1982