-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlardeepwalk.py
322 lines (284 loc) · 11.6 KB
/
lardeepwalk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -*- coding: UTF-8 -*-
#
import mpi4py.MPI as MPI
from numpy import *
import numpy as np
import operator
import sys;
import time
import gc;
#listdir
from os import listdir
#word2vec
from gensim import corpora, models, similarities
from gensim import utils, matutils
from gensim.models import word2vec
from gensim.models import Word2Vec
from gensim import *
#global variables
comm=MPI.COMM_WORLD
comm_rank=comm.Get_rank()
comm_size=comm.Get_size()
#
#
def predict(trainlist,predictPair,modelX,modelY,W,father):
bigdis=0
for line in trainlist:
nodeX=line
if nodeX in modelX.vocab.keys():
vecX=[]
vecX=list(modelX[nodeX]);
vecX.append(1);
vecX=array(vecX)
vecXinY=vecX*W
minDistance=inf
else: print nodeX;continue
for nodeY in modelY.vocab.keys():
vecY=list(modelY[nodeY]);
vecY.append(1);
vecY=array(vecY)
distance=abs(sum((vecXinY-vecY)*(vecXinY-vecY).T))
if(distance<minDistance):
minDistance=distance
minDistanceNodeY=nodeY
else:
continue
predictPair[nodeX]=minDistanceNodeY
return 0
#
def tpredict(local_testlist,tpredictPair,modelX,modelY,W,bigdis,father):
for line in local_testlist:
nodeX=line
if nodeX in modelX.vocab.keys():
vecX=[]
vecX=list(modelX[nodeX]);
vecX.append(1);
vecX=array(vecX)
vecXinY=(vecX*W)
minDistance=inf
disDict={}
disDictnode=list()
disDictdis=list()
else: continue
for nodeY in modelY.vocab.keys():
vecY=list(modelY[nodeY]);
vecY.append(1);
vecY=array(vecY)
distance=abs(sum((vecXinY-vecY)*(vecXinY-vecY).T))
disDictnode.append(str(nodeY))
disDictdis.append(float(distance))
i=0
for index in np.argpartition(disDictdis,kth=100)[:100]:
eachKey=disDictnode[index];distance=disDictdis[index];
if(i==0):
tpredictPair[nodeX]={eachKey:distance}
i+=1
elif(i<100):
i+=1
tpredictPair[nodeX][eachKey]=distance
else:
break
del(disDictnode,disDictdis)
return 0
def start(father):
if comm_rank==0:
#time
gc.collect()
print "startTime",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
#modelX=word2vec.Word2Vec.load_word2vec_format(father+"lx1_tang15_undirect_iter15_wind4_400s.emb", binary=False,fvocab=father+'modelx.vocab')
#modelY=word2vec.Word2Vec.load_word2vec_format(father+"ly1_tang15_iter15_wind4_400s.emb", binary=False,fvocab=father+'modely.vocab')
#
walkListX=word2vec.LineSentence(father+'walk1all_X.txt')#'walkListX.txt')
modelX=Word2Vec(walkListX,negative=10,sg=1,hs=0,size=400,window=3,min_count=0,workers=5,iter=5)
#del(walkListX)
walkListY = word2vec.LineSentence(father+'walk1all_Y.txt')#'walkListY.txt')
modelY=Word2Vec(walkListY,negative=10,sg=1,hs=0,size=400,window=3,min_count=0,workers=5,iter=5)
gc.collect()
###modelX.init_sims(replace=True);modelY.init_sims(replace=True)
modelX.save_word2vec_format(father+'lx1_tang8_direct_iter5_wind3_400s.emb', binary=False, fvocab=father+'modelx.vocab')
modelY.save_word2vec_format(father+'ly1_tang8_direct_iter5_wind3_400s.emb', binary=False, fvocab=father+'modely.vocab')
print "save ok !";
gc.collect()
#
#
realPairD={}
fr = open(father+'trainConnect3148.txt_0')
for line in fr.readlines():#m lines
lineArr = line.strip().split()#
if(lineArr[0] not in realPairD.keys()):
realPairD[str(lineArr[0])]=str(lineArr[1])#
#realPairD[str(lineArr[0])]=str(lineArr[0])#
else:
continue
#
matX = [];matY=[]
for realPairX,realPairY in realPairD.items():
if(realPairX in modelX.vocab.keys() and realPairY in modelY.vocab.keys()):
listX=list(modelX[realPairX]);
listX.append(1);
listY=list(modelY[realPairY]);
listY.append(1)
matX.append(listX)
matY.append(listY)
matX=matrix(matX);matY=matrix(matY)
#
xTx=matX.T*matX
#W=eye(mysize+1)
W=linalg.solve(xTx,matX.T*matY)
#
del(realPairD)
del(matX,matY)
gc.collect()
print "trainOK Time:",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
#print "W=",W
#
bigdis=0
all_trainlist=list();all_trainYlist=list()
ft=open(father+'trainConnect3148.txt_0','r')
for line in ft.readlines():
lineArr = line.strip().split()
nodeX=lineArr[0]
#nodeY=lineArr[0]
nodeY=lineArr[1]
all_trainlist.append(nodeX)
all_trainYlist.append(nodeY)
ft.close()
all_testlist=list();all_testYlist=list()
ft=open(father+'testConnect3148.txt_0','r')
for line in ft.readlines():
lineArr = line.strip().split()
nodeX=lineArr[0]
nodeY=lineArr[0]
#nodeY=lineArr[1]
all_testlist.append(nodeX)
all_testYlist.append(nodeY)
ft.close()
print "*******************trainset*******************"
#0
all_trainlist=comm.bcast(all_trainlist if comm_rank==0 else None,root=0)
all_trainYlist=comm.bcast(all_trainYlist if comm_rank==0 else None,root=0)
W=comm.bcast(mat(W) if comm_rank==0 else None,root=0)
modelX=comm.bcast(modelX if comm_rank==0 else None,root=0)
modelY=comm.bcast(modelY if comm_rank==0 else None,root=0)
#
num_samples=len(all_trainlist)
local_trainlist_offset = np.linspace(0, num_samples, comm_size + 1).astype('int')
local_trainYlist_offset = np.linspace(0, num_samples, comm_size + 1).astype('int')
#
local_trainlist = all_trainlist[local_trainlist_offset[comm_rank] :local_trainlist_offset[comm_rank + 1]]
local_trainYlist = all_trainYlist[local_trainYlist_offset[comm_rank] :local_trainYlist_offset[comm_rank + 1]]
print "****** %d/%d processor gets local data ****" %(comm_rank, comm_size)
#print local_trainlist
#process in local
local_predictPair={}
local_bigdis=predict(local_trainlist,local_predictPair,modelX,modelY,W,father)
local_trainrightItem=0.0
for i in range(0,len(local_trainlist)):
node=local_trainlist[i]
#print node,":",predictPair[node]
if(node not in local_predictPair.keys()):print 'node',node;continue
if (local_trainYlist[i]==local_predictPair[node]):
local_trainrightItem+=1
if(len(local_predictPair)>0):
print "local pid : %d ,train right items:%d ,local train accuracy : %f:"%(comm_rank,local_trainrightItem,float(local_trainrightItem)/len(local_predictPair))
else:
print "error,train,division 0!!" del(local_predictPair)
all_trainrightItem = comm.reduce(local_trainrightItem, root = 0, op = MPI.SUM)
bigdis= comm.reduce(local_bigdis, root = 0, op = MPI.MIN)
if comm_rank == 0:
print "*** all_trainrightItem: ", all_trainrightItem
print "************ result right items:******************",num_samples
print "all right accuracy ::",(float)(all_trainrightItem)/num_samples
########################test##################################
all_testlist=comm.bcast(all_testlist if comm_rank==0 else None,root=0)
all_testYlist=comm.bcast(all_testYlist if comm_rank==0 else None,root=0)
num_testsamples=len(all_testlist)
local_testlist_offset = np.linspace(0, num_testsamples, comm_size + 1).astype('int')
local_testYlist_offset = np.linspace(0, num_testsamples, comm_size + 1).astype('int')
#
local_testlist = all_testlist[local_testlist_offset[comm_rank] :local_testlist_offset[comm_rank + 1]]
local_testYlist = all_testYlist[local_testYlist_offset[comm_rank] :local_testYlist_offset[comm_rank + 1]]
#process in local
local_tpredictPair={}
tpredict(local_testlist,local_tpredictPair,modelX,modelY,W,bigdis,father)
#
local_testrightItem100=0.0;
local_testrightItem30=0.0;
local_testrightItem15=0.0;
local_testright10=0.0
local_testright8=0.0
local_testright5=0.0
local_testright3=0.0
local_testright1=0.0
#fr=open('result.txt','a')
for j in range(0,len(local_testlist)):
now=0.0
node=local_testlist[j]
if(node not in local_tpredictPair.keys()):print 'node',node;continue
#fr.write('%s '%str(node))
for(dictPnode,distance) in sorted(local_tpredictPair[node].items(),key=operator.itemgetter(1)):
now+=1
flag=0
#fr.write('%s '%(str(dictPnode)))
if(local_testYlist[j]==dictPnode):
local_testrightItem100+=1
if(now==1):
local_testright1+=1;flag=1
if(now<=3):
local_testright3+=1
if(now<=5):
local_testright5+=1
if(now<=8):
local_testright8+=1
if(now<=10):
local_testright10+=1
if(now<=15):
local_testrightItem15+=1
if(now<=30):
#flag=1
local_testrightItem30+=1
break
fr.write('\n')
if(len(local_tpredictPair)>0):
print "local_top100 test accuracy:",(local_testrightItem100/len(local_tpredictPair))
print "local_top30 test accuracy:",(local_testrightItem30/len(local_tpredictPair))
print "local_top15 test accuracy:",(local_testrightItem15/len(local_tpredictPair))
print "local_top10 test accuracy:",(local_testright10/len(local_tpredictPair))
print "local_top8 test accuracy:",(local_testright8/len(local_tpredictPair))
print "local_top5 test accuracy:",(local_testright5/len(local_tpredictPair))
print "local_top3 test accuracy:",(local_testright3/len(local_tpredictPair))
print "local_top1 test accuracy:",(local_testright1/len(local_tpredictPair))
print "local_test items:",(len(local_tpredictPair))
else:
print "local_error,test,division 0!!"
del(local_tpredictPair)
all_testrightItem100 = comm.reduce(local_testrightItem100, root = 0, op = MPI.SUM)
all_testrightItem30 = comm.reduce(local_testrightItem30, root = 0, op = MPI.SUM)
all_testrightItem15 = comm.reduce(local_testrightItem15, root = 0, op = MPI.SUM)
all_testright10 = comm.reduce(local_testright10, root = 0, op = MPI.SUM)
all_testright8 = comm.reduce(local_testright8, root = 0, op = MPI.SUM)
all_testright5 = comm.reduce(local_testright5, root = 0, op = MPI.SUM)
all_testright3 = comm.reduce(local_testright3, root = 0, op = MPI.SUM)
all_testright1 = comm.reduce(local_testright1, root = 0, op = MPI.SUM)
if comm_rank == 0:
print "all_top100 test accuracy:",float(all_testrightItem100)/num_testsamples
print "all_top30 test accuracy:",float(all_testrightItem30)/num_testsamples
print "all_top15 test accuracy:",float(all_testrightItem15)/num_testsamples
print "all_top10 test accuracy:",float(all_testright10)/num_testsamples
print "all_top8 test accuracy:",float(all_testright8)/num_testsamples
print "all_top5 test accuracy:",float(all_testright5)/num_testsamples
print "all_top3 test accuracy:",float(all_testright3)/num_testsamples
print "all_top1 test accuracy:",float(all_testright1)/num_testsamples
print "all_ test items:",(num_testsamples)
print "compete and predict end time:",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
del(modelX,modelY,W)
#print "record over time:",time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))
gc.collect()
if __name__=="__main__":
print "mpi4py start !"
if comm_rank == 0:
nLen = len(sys.argv);
for i in range(0, nLen):
print("argv %d:%s" %(i, sys.argv[i]));
father=str(sys.argv[1])
start(str(father))