-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstreamlit_app.py
249 lines (208 loc) · 8.56 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import json
from datetime import datetime
from io import StringIO
import matplotlib.pyplot as plt
import pandas as pd
import requests
import streamlit as st
from matplotlib.ticker import FuncFormatter
def extract_json_value(df, column, selected_key):
def extract_value(row):
try:
json_data = json.loads(row)
return json_data[selected_key] if selected_key in json_data else None
except (json.JSONDecodeError, KeyError):
return None
return df[column].apply(extract_value)
def get_data_from_url(url):
try:
if "github.com" in url:
# If the URL is from GitHub, map it to the raw URL
url = url.replace("github.com", "raw.githubusercontent.com").replace(
"/blob/", "/"
)
response = requests.get(url)
response.raise_for_status()
st.sidebar.success("Remote URl Added Successfully")
return pd.read_csv(StringIO(response.text))
except requests.exceptions.RequestException as e:
st.sidebar.error(f"Error retrieving data from URL: {e}")
return pd.DataFrame()
def dynamic_json_extraction(df):
st.text("Extract item(s) from JSON Stats")
selected_column = st.selectbox("Select column to extract from", df.columns)
# Extract unique keys from the selected column
unique_keys = set()
for row in df[selected_column]:
try:
json_data = json.loads(row)
unique_keys.update(json_data.keys())
except Exception as ex:
break
# Allow the user to select multiple keys
selected_keys = st.multiselect(
"Select JSON Key(s) to extract", sorted(list(unique_keys))
)
if not selected_keys:
st.warning("No keys selected. Please choose one or more keys for extract")
return df
# Extract the selected JSON keys and create new columns
if selected_keys:
if st.button("Extract"):
# Extract the selected JSON keys and create new columns
for key in selected_keys:
new_column_name = f"{selected_column}_{key}"
df[new_column_name] = extract_json_value(df, selected_column, key)
st.success(f"Successfully extracted {key} from {selected_column}.")
return df
# Function to plot the chart based on user selections
def plot_chart(df, x_column, y_columns, plot_type, title, chart_properties):
fig, ax = plt.subplots(figsize=(12, 6))
if plot_type == "line":
for i, column in enumerate(y_columns):
ax.plot(
df[x_column],
df[column],
label=column,
marker=chart_properties["marker"],
linestyle=chart_properties["linestyle"],
)
elif plot_type == "bar":
df.plot(
x=x_column,
y=y_columns,
kind="bar",
stacked=True,
width=chart_properties["bar_width"],
ax=ax,
)
elif plot_type == "scatter":
for i, column in enumerate(y_columns):
ax.scatter(
df[x_column],
df[column],
label=column,
marker=chart_properties["marker"],
)
ax.set_title(title)
ax.set_xlabel(x_column)
ax.set_ylabel("Values")
ax.legend()
return fig, ax
# Main Streamlit app
def main():
# Placeholder for df
df = pd.DataFrame()
st.sidebar.title("OSMSG Stats Visualizer")
st.sidebar.subheader("Choose Data")
data_source = st.sidebar.radio(
"Select data source", ("Upload CSV", "Use Remote URL")
)
if data_source == "Upload CSV":
uploaded_file = st.sidebar.file_uploader("Upload a CSV file", type=["csv"])
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
else:
# Use remote data
remote_url = st.sidebar.text_input("Enter Remote CSV URL", "")
if remote_url:
df = get_data_from_url(remote_url)
st.sidebar.title("Choose Chart Options")
selected_columns = st.sidebar.multiselect("Select columns for chart", df.columns)
if not selected_columns:
st.warning("Please select at least one column for the chart.")
st.stop()
plot_type = st.sidebar.selectbox("Select chart type", ["line", "bar", "scatter"])
# Ask user for chart title
chart_title = st.text_input("Enter Chart Title", "My Customized Chart")
show_table = st.sidebar.checkbox("Show Table", value=True)
if "tags_create" in selected_columns or "tags_modify" in selected_columns:
selected_key = st.sidebar.text_input("Enter JSON Key for Tags", "name")
if "tags_create" in selected_columns:
df["tags_create"] = extract_json_value(df, "tags_create", selected_key)
selected_columns.remove("tags_create")
selected_columns.append("tags_create")
if "tags_modify" in selected_columns:
df["tags_modify"] = extract_json_value(df, "tags_modify", selected_key)
selected_columns.remove("tags_modify")
selected_columns.append("tags_modify")
chart_properties = {}
if plot_type == "line":
chart_properties["marker"] = st.sidebar.selectbox(
"Select Marker Type", options=["o", "s", "^"], index=0, key="marker"
)
chart_properties["linestyle"] = st.sidebar.selectbox(
"Select Line Style", options=["-", "--", "-."], index=0, key="linestyle"
)
elif plot_type == "bar":
chart_properties["bar_width"] = st.sidebar.slider(
"Select Bar Width",
min_value=0.1,
max_value=1.0,
value=0.8,
step=0.1,
key="bar_width",
)
elif plot_type == "scatter":
chart_properties["marker"] = st.sidebar.selectbox(
"Select Marker Type", options=["o", "s", "^"], index=0, key="marker"
)
# Allow users to select x-axis interval based on data type
x_column = st.selectbox("Select X-axis column", df.columns)
# st.title(chart_title)
y_columns = st.multiselect("Select Y-axis column(s)", selected_columns)
if pd.api.types.is_numeric_dtype(df[x_column]):
x_min = st.slider(
"Select X-axis Interval (Min)",
min_value=df[x_column].min(),
max_value=df[x_column].max(),
value=df[x_column].min(),
)
x_max = st.slider(
"Select X-axis Interval (Max)",
min_value=df[x_column].min(),
max_value=df[x_column].max(),
value=df[x_column].max(),
)
else:
x_min = st.slider(
"Select X-axis Interval (Min)",
min_value=datetime.strptime(df[x_column].min(), "%Y-%m-%d").date(),
max_value=datetime.strptime(df[x_column].max(), "%Y-%m-%d").date(),
value=datetime.strptime(df[x_column].min(), "%Y-%m-%d").date(),
format="MMM DD, YYYY",
)
x_max = st.slider(
"Select X-axis Interval (Max)",
min_value=datetime.strptime(df[x_column].min(), "%Y-%m-%d").date(),
max_value=datetime.strptime(df[x_column].max(), "%Y-%m-%d").date(),
value=datetime.strptime(df[x_column].max(), "%Y-%m-%d").date(),
format="MMM DD, YYYY",
)
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Filter the DataFrame based on the selected x-axis interval
df_filtered = df[(df[x_column] >= x_min) & (df[x_column] <= x_max)]
fig, ax = plot_chart(
df_filtered, x_column, y_columns, plot_type, chart_title, chart_properties
)
st.pyplot(fig)
if show_table:
# Display the table with interactive features
st.subheader("Data Table:")
displayed_df = dynamic_json_extraction(df)
# Additional options for the displayed table
if st.checkbox("Show Selected Columns"):
selected_columns = st.multiselect("Select columns", df.columns)
displayed_df = df[selected_columns]
if st.checkbox("Sort Data"):
selected_column = st.selectbox("Select column to sort by", df.columns)
ascending = st.checkbox("Sort in Ascending Order", True)
displayed_df = df.sort_values(by=selected_column, ascending=ascending)
if st.checkbox("Filter Data"):
column_name = st.selectbox("Select column to filter", df.columns)
filter_value = st.text_input("Enter filter value", "")
displayed_df = df[df[column_name] == filter_value]
# Display the modified DataFrame based on user selections
st.write(displayed_df)
if __name__ == "__main__":
main()