-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathSpatioTemporalSegmentation-ScanNet.patch
205 lines (193 loc) · 8.02 KB
/
SpatioTemporalSegmentation-ScanNet.patch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
diff --git a/config.py b/config.py
index e1249ea..94f4160 100644
--- a/config.py
+++ b/config.py
@@ -74,7 +74,7 @@ dir_arg.add_argument('--data_dir', type=str, default='data')
# Data
data_arg = add_argument_group('Data')
-data_arg.add_argument('--dataset', type=str, default='ScannetSparseVoxelizationDataset')
+data_arg.add_argument('--dataset', type=str, default='ScannetSparseVoxelizationDataset2cm')
data_arg.add_argument('--point_lim', type=int, default=-1)
data_arg.add_argument('--pre_point_lim', type=int, default=-1)
data_arg.add_argument('--batch_size', type=int, default=16)
@@ -91,12 +91,13 @@ data_arg.add_argument('--return_transformation', type=str2bool, default=False)
data_arg.add_argument('--ignore_duplicate_class', type=str2bool, default=False)
data_arg.add_argument('--partial_crop', type=float, default=0.)
data_arg.add_argument('--train_limit_numpoints', type=int, default=0)
+data_arg.add_argument('--merge', type=str2bool, default=False)
# Point Cloud Dataset
data_arg.add_argument(
'--scannet_path',
type=str,
default='/cvgl2/u/jgwak/Datasets/scannet',
help='Scannet online voxelization dataset root dir')
# Training / test parameters
diff --git a/lib/dataset.py b/lib/dataset.py
index 5c820f2..e2fc437 100644
--- a/lib/dataset.py
+++ b/lib/dataset.py
@@ -9,6 +9,7 @@ from tqdm import tqdm
import os.path as osp
from pathlib import Path
from collections import defaultdict
+import volumentations as V
import random
import numpy as np
from enum import Enum
@@ -89,6 +90,7 @@ class DictDataset(Dataset, ABC):
input_transform=None,
target_transform=None,
cache=False,
+ merge=False,
data_root='/'):
"""
data_paths: list of lists, [[str_path_to_input, str_path_to_label], [...]]
@@ -168,6 +170,7 @@ class VoxelizationDatasetBase(DictDataset, ABC):
explicit_rotation=-1,
ignore_mask=255,
return_transformation=False,
+ merge=False,
**kwargs):
"""
ignore_mask: label value for ignore class. It will not be used as a class in the loss or evaluation.
@@ -179,6 +182,7 @@ class VoxelizationDatasetBase(DictDataset, ABC):
input_transform=input_transform,
target_transform=target_transform,
cache=cache,
+ merge=merge,
data_root=data_root)
self.ignore_mask = ignore_mask
@@ -190,7 +194,10 @@ class VoxelizationDatasetBase(DictDataset, ABC):
def load_ply(self, index):
filepath = self.data_root / self.data_paths[index]
- return read_plyfile(filepath), None
+ # if ".npy" in str(filepath):
+ return np.load(filepath)[:, :-1], None
+ # else:
+ # return read_plyfile(filepath), None
def __len__(self):
num_data = len(self.data_paths)
@@ -225,11 +232,19 @@ class SparseVoxelizationDataset(VoxelizationDatasetBase):
augment_data=False,
elastic_distortion=False,
config=None,
+ merge=False,
**kwargs):
self.augment_data = augment_data
self.elastic_distortion = elastic_distortion
self.config = config
+ self.merge = merge
+ self.augs = V.Compose([
+ V.Scale3d(always_apply=True),
+ V.RotateAroundAxis3d(always_apply=True, axis=(0,0,1), rotation_limit=[-np.pi, np.pi]),
+ V.RotateAroundAxis3d(always_apply=True, axis=(0,1,0), rotation_limit=[-np.pi/24, np.pi/24]),
+ V.RotateAroundAxis3d(always_apply=True, axis=(1,0,0), rotation_limit=[-np.pi/24, np.pi/24])
+ ])
VoxelizationDatasetBase.__init__(
self,
data_paths,
@@ -285,12 +301,41 @@ class SparseVoxelizationDataset(VoxelizationDatasetBase):
else:
rotation_angle = None
pointcloud, center = self.load_ply(index)
+
if self.PREVOXELIZE_VOXEL_SIZE is not None:
inds = ME.SparseVoxelize(pointcloud[:, :3] / self.PREVOXELIZE_VOXEL_SIZE, return_index=True)
pointcloud = pointcloud[inds]
if self.elastic_distortion:
pointcloud = self._augment_elastic_distortion(pointcloud)
+
+ if (random.random() < 0.80) and self.merge:
+ sampled_index=random.randint(0, self.__len__() - 1)
+ coords, feats, labels = self.convert_mat2cfl(pointcloud)
+
+ pointcloud1, _ = self.load_ply(sampled_index)
+ if self.PREVOXELIZE_VOXEL_SIZE is not None:
+ inds = ME.SparseVoxelize(pointcloud1[:, :3] / self.PREVOXELIZE_VOXEL_SIZE, return_index=True)
+ pointcloud1 = pointcloud1[inds]
+ if self.elastic_distortion:
+ pointcloud1 = self._augment_elastic_distortion(pointcloud1)
+ coords1, feats1, labels1 = self.convert_mat2cfl(pointcloud1)
+ color1, normals1 = feats1[:, :3], feats1[:, 3:]
+ aug = self.augs(points=coords1, features=color1, normals=normals1, labels=labels1)
+ coords1, color1, labels1, normals1 = (aug["points"], aug["features"], aug["labels"], aug["normals"])
+ feats1 = np.hstack((color1, normals1))
+ # coords1, feats1, labels1 = self.prevoxel_transform(coords1, feats1, labels1)
+
+ coords -= coords.mean(0)
+ coords += np.random.uniform(coords.min(0), coords.max(0)) / 2
+ coords1 -= coords1.mean(0)
+ # coords1 += np.random.uniform(coords1.min(0), coords1.max(0)) / 2
+ coords = np.concatenate((coords, coords1))
+ feats = np.concatenate((feats, feats1))
+ labels = np.concatenate((labels, labels1))
+ center = None
+ coords -= coords.mean(0)
+ pointcloud = np.hstack((coords, feats, labels[:, None]))
# import open3d as o3d
# from lib.open3d_utils import make_pointcloud
@@ -456,6 +502,7 @@ def initialize_data_loader(DatasetClass,
augment_data,
batch_size,
limit_numpoints,
+ merge,
elastic_distortion=False,
input_transform=None,
target_transform=None):
@@ -493,6 +541,7 @@ def initialize_data_loader(DatasetClass,
cache=config.cache_data,
augment_data=augment_data,
elastic_distortion=elastic_distortion,
+ merge=merge,
phase=phase)
if repeat:
diff --git a/lib/datasets/scannet.py b/lib/datasets/scannet.py
index 44648c6..d8b6f65 100644
--- a/lib/datasets/scannet.py
+++ b/lib/datasets/scannet.py
@@ -99,6 +99,7 @@ class ScannetSparseVoxelizationDataset(SparseVoxelizationDataset):
augment_data=True,
elastic_distortion=False,
cache=False,
+ merge=False,
phase=DatasetPhase.Train):
if isinstance(phase, str):
phase = str2datasetphase_type(phase)
@@ -117,6 +118,7 @@ class ScannetSparseVoxelizationDataset(SparseVoxelizationDataset):
return_transformation=config.return_transformation,
augment_data=augment_data,
elastic_distortion=elastic_distortion,
+ merge=merge,
config=config)
def get_output_id(self, iteration):
diff --git a/main.py b/main.py
index 24045c6..f84ad37 100644
--- a/main.py
+++ b/main.py
@@ -79,6 +79,7 @@ def main():
elastic_distortion=config.train_elastic_distortion,
shuffle=True,
repeat=True,
+ merge=config.merge,
batch_size=config.batch_size,
limit_numpoints=config.train_limit_numpoints)
val_data_loader = initialize_data_loader(
@@ -89,6 +90,7 @@ def main():
augment_data=False,
elastic_distortion=config.test_elastic_distortion,
shuffle=True,
+ merge=False,
repeat=False,
batch_size=config.val_batch_size,
limit_numpoints=False)
@@ -108,9 +111,10 @@ def main():
elastic_distortion=config.test_elastic_distortion,
shuffle=False,
repeat=False,
+ merge=False,
batch_size=config.test_batch_size,
limit_numpoints=False)
if test_data_loader.dataset.NUM_IN_CHANNEL is not None:
num_in_channel = test_data_loader.dataset.NUM_IN_CHANNEL
else:
num_in_channel = 3