-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmining.py
executable file
·571 lines (486 loc) · 23.8 KB
/
mining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#!/usr/bin/env python3
import argparse
import datetime
import math
import random
import statistics
import sys
import time
from collections import namedtuple
from functools import partial
from operator import attrgetter
def bits_to_target(bits):
size = bits >> 24
assert size <= 0x1d
word = bits & 0x00ffffff
assert 0x8000 <= word <= 0x7fffff
if size <= 3:
return word >> (8 * (3 - size))
else:
return word << (8 * (size - 3))
MAX_BITS = 0x1d00ffff
MAX_TARGET = bits_to_target(MAX_BITS)
def target_to_bits(target):
assert target > 0
if target > MAX_TARGET:
print('Warning: target went above maximum ({} > {})'
.format(target, MAX_TARGET), file=sys.stderr)
target = MAX_TARGET
size = (target.bit_length() + 7) // 8
mask64 = 0xffffffffffffffff
if size <= 3:
compact = (target & mask64) << (8 * (3 - size))
else:
compact = (target >> (8 * (size - 3))) & mask64
if compact & 0x00800000:
compact >>= 8
size += 1
assert compact == (compact & 0x007fffff)
assert size < 256
return compact | size << 24
def bits_to_work(bits):
return (2 << 255) // (bits_to_target(bits) + 1)
def target_to_hex(target):
h = hex(target)[2:]
return '0' * (64 - len(h)) + h
TARGET_1 = bits_to_target(486604799)
INITIAL_BCC_BITS = 403458999
INITIAL_SWC_BITS = 402734313
INITIAL_FX = 0.18
INITIAL_TIMESTAMP = 1503430225
INITIAL_HASHRATE = 500 # In PH/s.
INITIAL_HEIGHT = 481824
INITIAL_SINGLE_WORK = bits_to_work(INITIAL_BCC_BITS)
# Steady hashrate mines the BCC chain all the time. In PH/s.
STEADY_HASHRATE = 300
# Variable hash is split across both chains according to relative
# revenue. If the revenue ratio for either chain is at least 15%
# higher, everything switches. Otherwise the proportion mining the
# chain is linear between +- 15%.
VARIABLE_HASHRATE = 2000 # In PH/s.
VARIABLE_PCT = 15 # 85% to 115%
VARIABLE_WINDOW = 6 # No of blocks averaged to determine revenue ratio
# Greedy hashrate switches chain if that chain is more profitable for
# GREEDY_WINDOW BCC blocks. It will only bother to switch if it has
# consistently been GREEDY_PCT more profitable.
GREEDY_HASHRATE = 2000 # In PH/s.
GREEDY_PCT = 10
GREEDY_WINDOW = 6
IDEAL_BLOCK_TIME = 10 * 60
State = namedtuple('State', 'height wall_time timestamp bits chainwork fx '
'hashrate rev_ratio greedy_frac msg')
states = []
def print_headers():
print(', '.join(['Height', 'FX', 'Block Time', 'Unix', 'Timestamp',
'Difficulty (bn)', 'Implied Difficulty (bn)',
'Hashrate (PH/s)', 'Rev Ratio', 'Greedy?', 'Comments']))
def print_state():
state = states[-1]
block_time = state.timestamp - states[-2].timestamp
t = datetime.datetime.fromtimestamp(state.timestamp)
difficulty = TARGET_1 / bits_to_target(state.bits)
implied_diff = TARGET_1 / ((2 << 255) / (state.hashrate * 1e15 * IDEAL_BLOCK_TIME))
print(', '.join(['{:d}'.format(state.height),
'{:.8f}'.format(state.fx),
'{:d}'.format(block_time),
'{:d}'.format(state.timestamp),
'{:%Y-%m-%d %H:%M:%S}'.format(t),
'{:.2f}'.format(difficulty / 1e9),
'{:.2f}'.format(implied_diff / 1e9),
'{:.0f}'.format(state.hashrate),
'{:.3f}'.format(state.rev_ratio),
'Yes' if state.greedy_frac == 1.0 else 'No',
state.msg]))
def revenue_ratio(fx, BCC_target):
'''Returns the instantaneous SWC revenue rate divided by the
instantaneous BCC revenue rate. A value less than 1.0 makes it
attractive to mine BCC. Greater than 1.0, SWC.'''
SWC_fees = 0.25 + 2.0 * random.random()
SWC_revenue = 12.5 + SWC_fees
SWC_target = bits_to_target(INITIAL_SWC_BITS)
BCC_fees = 0.2 * random.random()
BCC_revenue = (12.5 + BCC_fees) * fx
SWC_difficulty_ratio = BCC_target / SWC_target
return SWC_revenue / SWC_difficulty_ratio / BCC_revenue
def median_time_past(states):
times = [state.timestamp for state in states]
return sorted(times)[len(times) // 2]
def next_bits_k(msg, mtp_window, high_barrier, target_raise_frac,
low_barrier, target_drop_frac, fast_blocks_pct):
# Calculate N-block MTP diff
MTP_0 = median_time_past(states[-11:])
MTP_N = median_time_past(states[-11-mtp_window:-mtp_window])
MTP_diff = MTP_0 - MTP_N
bits = states[-1].bits
target = bits_to_target(bits)
# Long term block production time stabiliser
t = states[-1].timestamp - states[-2017].timestamp
if t < IDEAL_BLOCK_TIME * 2016 * fast_blocks_pct // 100:
msg.append("2016 block time difficulty raise")
target -= target // target_drop_frac
if MTP_diff > high_barrier:
target += target // target_raise_frac
msg.append("Difficulty drop {}".format(MTP_diff))
elif MTP_diff < low_barrier:
target -= target // target_drop_frac
msg.append("Difficulty raise {}".format(MTP_diff))
else:
msg.append("Difficulty held {}".format(MTP_diff))
return target_to_bits(target)
def suitable_block_index(index):
assert index >= 3
indices = [index - 2, index - 1, index]
if states[indices[0]].timestamp > states[indices[2]].timestamp:
indices[0], indices[2] = indices[2], indices[0]
if states[indices[0]].timestamp > states[indices[1]].timestamp:
indices[0], indices[1] = indices[1], indices[0]
if states[indices[1]].timestamp > states[indices[2]].timestamp:
indices[1], indices[2] = indices[2], indices[1]
return indices[1]
def compute_index_fast(index_last):
for candidate in range(index_last - 3, 0, -1):
index_fast = suitable_block_index(candidate)
if index_last - index_fast < 5:
continue
if (states[index_last].timestamp - states[index_fast].timestamp
>= 13 * IDEAL_BLOCK_TIME):
return index_fast
raise AssertionError('should not happen')
def compute_target(first_index, last_index):
work = states[last_index].chainwork - states[first_index].chainwork
work *= IDEAL_BLOCK_TIME
work //= states[last_index].timestamp - states[first_index].timestamp
return (2 << 255) // work - 1
def compute_cw_target(block_count):
N = len(states) - 1
last = suitable_block_index(N)
first = suitable_block_index(N - block_count)
timespan = states[last].timestamp - states[first].timestamp
timespan = max(block_count * IDEAL_BLOCK_TIME // 2, min(block_count * 2 * IDEAL_BLOCK_TIME, timespan))
work = (states[last].chainwork - states[first].chainwork) * IDEAL_BLOCK_TIME // timespan
return (2 << 255) // work - 1
def next_bits_cw(msg, block_count):
interval_target = compute_cw_target(block_count)
return target_to_bits(interval_target)
def next_bits_wt(msg, block_count):
first, last = -1-block_count, -1
timespan = 0
prior_timestamp = states[first].timestamp
for i in range(first + 1, last + 1):
target_i = bits_to_target(states[i].bits)
# Prevent negative time_i values
timestamp = max(states[i].timestamp, prior_timestamp)
time_i = timestamp - prior_timestamp
prior_timestamp = timestamp
adj_time_i = time_i * target_i # Difficulty weight
timespan += adj_time_i * (i - first) # Recency weight
timespan = timespan * 2 // (block_count + 1) # Normalize recency weight
target = timespan // (IDEAL_BLOCK_TIME * block_count)
return target_to_bits(target)
def next_bits_wt_compare(msg, block_count):
with open("current_state.csv", 'w') as fh:
for s in states:
fh.write("%s,%s,%s\n" % (s.height, s.bits, s.timestamp))
from subprocess import Popen, PIPE
process = Popen(["./cashwork"], stdout=PIPE)
(next_bits, err) = process.communicate()
exit_code = process.wait()
next_bits = int(next_bits.decode())
next_bits_py = next_bits_wt(msg, block_count)
if next_bits != next_bits_py:
print("ERROR: Bits don't match. External %s, local %s" % (next_bits, next_bits_py))
assert(next_bits == next_bits_py)
return next_bits
def next_bits_wtema(msg, alpha_recip):
# This algorithm is weighted-target exponential moving average.
# Target is calculated based on inter-block times weighted by a
# progressively decreasing factor for past inter-block times,
# according to the parameter alpha. If the single_block_target SBT is
# calculated as:
# SBT = prior_target * block_time / ideal_block_time
# then:
# next_target = SBT * α + prior_target * (1 - α)
# Substituting and factorizing:
# next_target = prior_target * α / ideal_block_time
# * (block_time + (1 / α - 1) * ideal_block_time)
# We use the reciprocal of alpha as an integer to avoid floating
# point arithmetic. Doing so the above formula maintains precision and
# avoids overflows wih large targets in regtest
block_time = states[-1].timestamp - states[-2].timestamp
prior_target = bits_to_target(states[-1].bits)
next_target = prior_target // (IDEAL_BLOCK_TIME * alpha_recip)
next_target *= block_time + IDEAL_BLOCK_TIME * (alpha_recip - 1)
# Constrain individual target changes to 12.5%
max_change = prior_target >> 3
next_target = max(min(next_target, prior_target + max_change),
prior_target - max_change)
return target_to_bits(next_target)
def next_bits_ema(msg, window):
"""This calculates difficulty (1/target) as proportional to the recent hashrate, where "recent hashrate" is estimated by an EMA (exponential moving avg) of recent "hashrate observations", and
a "hashrate observation" is inferred from each block time.
Eg, suppose our hashrate estimate before the last block B was H, and thus our difficulty D was proportional to H, intended to yield (on average) a 10-minute block. But suppose in fact
block B was mined after only 2 minutes. Then we infer that during those 2 minutes, hashrate was ~5H, and update our next block's hashrate estimate (and thus difficulty) upwards accordingly.
In particular, blocks twice as long get twice the weight: a 1-second block tells us hashrate was (probably) high for only 1 second, but a 24-hour block tells us hashrate was (probably) low
for a full day - the latter *should* get much more weight in our "recent hashrate" estimate."""
block_time = states[-1].timestamp - states[-2].timestamp
block_time = max(IDEAL_BLOCK_TIME / 100, min(100 * IDEAL_BLOCK_TIME, block_time)) # Crudely dodge problems from ~0/negative/huge block times
old_hashrate_est = TARGET_1 / bits_to_target(states[-1].bits) # "Hashrate estimate" - aka difficulty!
block_weight = 1 - math.exp(-block_time / window) # Weight of last block_time seconds, according to exp moving avg
block_hashrate_est = (IDEAL_BLOCK_TIME / block_time) * old_hashrate_est # Eg, if a block takes 2 min instead of 10, we est hashrate was ~5x higher than predicted
new_hashrate_est = (1 - block_weight) * old_hashrate_est + block_weight * block_hashrate_est # Simple weighted avg of old hashrate est, + block's adjusted hashrate est
new_target = round(TARGET_1 / new_hashrate_est)
return target_to_bits(new_target)
def next_bits_ema2(msg, window):
# A minor reworking of next_bits_ema() above, meant to produce almost exactly the same numbers in typical cases, but be more resilient to huge/0/negative block times.
max_prev_timestamp = max(state.timestamp for state in states[-100:-1])
block_time = max(min(IDEAL_BLOCK_TIME, window) / 100, states[-1].timestamp - max_prev_timestamp) # Luckily our target formula is ~flat near 0, so can floor block_time at some small val
old_target = bits_to_target(states[-1].bits)
new_target = round(old_target / (1 - math.expm1(-block_time / window) * (IDEAL_BLOCK_TIME / block_time - 1)))
return target_to_bits(new_target)
def next_bits_ema_int_approx(msg, window):
# An integer-math simplified approximation of next_bits_ema2() above.
max_prev_timestamp = max(state.timestamp for state in states[-100:-1])
block_time = max(0, min(window, states[-1].timestamp - max_prev_timestamp)) # Need block_time <= window for the linear approx below to work (approximate the above)
old_target = bits_to_target(states[-1].bits)
new_target = old_target * window // (window + IDEAL_BLOCK_TIME - block_time) # Simplifies the corresponding line above via this approx: for 0 <= x << 1, 1-e**(-x) =~ x
return target_to_bits(new_target)
def exp_int_approx(x, decimals=9):
"""Approximates e**(x / 10**decimals) using integer math, returning the answer scaled by the same number of dec places as the input. Eg:
exp_int_approx(1000000, 6) -> 2718281 (e**1 = 2.718281)
exp_int_approx(3000, 3) -> 20085 (e**3 = 20.085)
exp_int_approx(500, 3) -> 1648 (e**0.5 = 1.648)"""
assert type(x) is int, str(type(x)) # If we pass in a non-int, something has gone wrong
scaling, scaling_2 = 10**decimals, 10**(2*decimals)
h = max(0, int.bit_length(x) - int.bit_length(scaling) + 4) # h = the number of times we halve x before using our fancy approximation
term1, term2 = 3 * scaling << h, 3 * scaling_2 << (2*h) # Terms from the hairy but accurate approximation we're using - see https://math.stackexchange.com/a/56064
hth_square_root_of_e_x = scaling_2 * ((x + term1)**2 + term2) // ((x - term1)**2 + term2)
e_x = hth_square_root_of_e_x # Now just need to square hth_square_root_of_e_x h times, while repeatedly dividing out our scaling factor
for i in range(h):
e_x = e_x**2 // scaling_2
return e_x // scaling # And finally, we still have one extra scaling factor to divide out.
def next_bits_ema_int_approx2(msg, window):
# An integer-math version of next_bits_ema2() above, trying to retain the correct exponential behavior for very long block times.
max_prev_timestamp = max(state.timestamp for state in states[-100:-1])
block_time = max(min(IDEAL_BLOCK_TIME, window) // 100, states[-1].timestamp - max_prev_timestamp)
old_target = bits_to_target(states[-1].bits)
decimals = 9
scaling = 10**decimals
new_target = scaling**2 * old_target // (scaling**2 - (exp_int_approx(scaling * -block_time // window, decimals) - scaling) * (scaling * IDEAL_BLOCK_TIME // block_time - scaling))
return target_to_bits(new_target)
def next_bits_simple_exponential(msg, window):
# Dead simple: if the block time is IDEAL_BLOCK_TIME, target is unchanged; if it's more (or less) by n (-n) minutes, scale target by e**(n/window).
# One nice thing about this is it avoids any need for special handling of huge/0/negative block times. Eg, successive block times of (-1000000, 1000020) (or vice versa) result in
# *exactly* the same target as (10, 10). (This is in fact the only algo with this property!)
block_time = states[-1].timestamp - states[-2].timestamp
old_target = bits_to_target(states[-1].bits)
new_target = round(math.exp((block_time - IDEAL_BLOCK_TIME) / window) * old_target)
return target_to_bits(new_target)
def next_bits_simple_exponential_int_approx(msg, window):
# An integer-math version of next_bits_simple_exponential() above.
block_time = states[-1].timestamp - states[-2].timestamp
old_target = bits_to_target(states[-1].bits)
decimals = 9
scaling = 10**decimals
new_target = exp_int_approx(scaling * (block_time - IDEAL_BLOCK_TIME) // window, decimals) * old_target // scaling
return target_to_bits(new_target)
def block_time(mean_time):
# Sample the exponential distn
sample = random.random()
lmbda = 1 / mean_time
return math.log(1 - sample) / -lmbda
def next_fx_random(r):
return states[-1].fx * (1.0 + (r - 0.5) / 200)
def next_fx_ramp(r):
return states[-1].fx * 1.00017149454
def next_step(algo, scenario, fx_jump_factor):
# First figure out our hashrate
msg = []
high = 1.0 + VARIABLE_PCT / 100
scale_fac = 50 / VARIABLE_PCT
N = VARIABLE_WINDOW
mean_rev_ratio = sum(state.rev_ratio for state in states[-N:]) / N
var_fraction = max(0, min(1, (high - mean_rev_ratio) * scale_fac))
if ((scenario.pump_144_threshold > 0) and
(states[-1-144+5].timestamp - states[-1-144].timestamp > scenario.pump_144_threshold)):
var_fraction = max(var_fraction, .25)
N = GREEDY_WINDOW
greedy_rev_ratio = sum(state.rev_ratio for state in states[-N:]) / N
greedy_frac = states[-1].greedy_frac
if greedy_rev_ratio >= 1 + GREEDY_PCT / 100:
if greedy_frac != 0.0:
msg.append("Greedy miners left")
greedy_frac = 0.0
elif greedy_rev_ratio <= 1 - GREEDY_PCT / 100:
if greedy_frac != 1.0:
msg.append("Greedy miners joined")
greedy_frac = 1.0
hashrate = (STEADY_HASHRATE + scenario.dr_hashrate
+ VARIABLE_HASHRATE * var_fraction
+ GREEDY_HASHRATE * greedy_frac)
# Calculate our dynamic difficulty
bits = algo.next_bits(msg, **algo.params)
target = bits_to_target(bits)
# See how long we take to mine a block
mean_hashes = pow(2, 256) // target
mean_time = mean_hashes / (hashrate * 1e15)
time = int(block_time(mean_time) + 0.5)
wall_time = states[-1].wall_time + time
# Did the difficulty ramp hashrate get the block?
if random.random() < (abs(scenario.dr_hashrate) / hashrate):
if (scenario.dr_hashrate > 0):
timestamp = median_time_past(states[-11:]) + 1
else:
timestamp = wall_time + 2 * 60 * 60
else:
timestamp = wall_time
# Get a new FX rate
rand = random.random()
fx = scenario.next_fx(rand, **scenario.params)
if fx_jump_factor != 1.0:
msg.append('FX jumped by factor {:.2f}'.format(fx_jump_factor))
fx *= fx_jump_factor
rev_ratio = revenue_ratio(fx, target)
chainwork = states[-1].chainwork + bits_to_work(bits)
# add a state
states.append(State(states[-1].height + 1, wall_time, timestamp,
bits, chainwork, fx, hashrate, rev_ratio,
greedy_frac, ' / '.join(msg)))
Algo = namedtuple('Algo', 'next_bits params')
Algos = {
'k-1' : Algo(next_bits_k, {
'mtp_window': 6,
'high_barrier': 60 * 128,
'target_raise_frac': 64, # Reduce difficulty ~ 1.6%
'low_barrier': 60 * 30,
'target_drop_frac': 256, # Raise difficulty ~ 0.4%
'fast_blocks_pct': 95,
}),
'cw-144' : Algo(next_bits_cw, {
'block_count': 144,
}),
'wt-144' : Algo(next_bits_wt, {
'block_count': 144
}),
# runs wt-144 in external program, compares with python implementation.
'wt-144-compare' : Algo(next_bits_wt_compare, {
'block_count': 144
}),
'ema-30min' : Algo(next_bits_ema, { # Exponential moving avg
'window': 30 * 60,
}),
'ema-3h' : Algo(next_bits_ema, {
'window': 3 * 60 * 60,
}),
'ema-1d' : Algo(next_bits_ema, {
'window': 24 * 60 * 60,
}),
'ema2-1d' : Algo(next_bits_ema2, {
'window': 24 * 60 * 60,
}),
'emai-1d' : Algo(next_bits_ema_int_approx, {
'window': 24 * 60 * 60,
}),
'emai2-1d' : Algo(next_bits_ema_int_approx2, {
'window': 24 * 60 * 60,
}),
'wtema-72' : Algo(next_bits_wtema, {
'alpha_recip': 104, # floor(1/(1 - pow(.5, 1.0/72))), # half-life = 72
}),
'wtema-100' : Algo(next_bits_wtema, {
'alpha_recip': 144, # floor(1/(1 - pow(.5, 1.0/100))), # half-life = 100
}),
'simpexp-1d' : Algo(next_bits_simple_exponential, {
'window': 24 * 60 * 60,
}),
'simpexpi-1d' : Algo(next_bits_simple_exponential_int_approx, {
'window': 24 * 60 * 60,
}),
}
Scenario = namedtuple('Scenario', 'next_fx params, dr_hashrate, pump_144_threshold')
Scenarios = {
'default' : Scenario(next_fx_random, {}, 0, 0),
'fxramp' : Scenario(next_fx_ramp, {}, 0, 0),
# Difficulty rampers with given PH/s
'dr50' : Scenario(next_fx_random, {}, 50, 0),
'dr75' : Scenario(next_fx_random, {}, 75, 0),
'dr100' : Scenario(next_fx_random, {}, 100, 0),
'pump-osc' : Scenario(next_fx_ramp, {}, 0, 8000),
'ft100' : Scenario(next_fx_random, {}, -100, 0),
}
def run_one_simul(algo, scenario, print_it):
states.clear()
# Initial state is afer 2020 steady prefix blocks
N = 2020
for n in range(-N, 0):
state = State(INITIAL_HEIGHT + n, INITIAL_TIMESTAMP + n * IDEAL_BLOCK_TIME,
INITIAL_TIMESTAMP + n * IDEAL_BLOCK_TIME,
INITIAL_BCC_BITS, INITIAL_SINGLE_WORK * (n + N + 1),
INITIAL_FX, INITIAL_HASHRATE, 1.0, False, '')
states.append(state)
# Add 10 randomly-timed FX jumps (up or down 10 and 15 percent) to
# see how algos recalibrate
fx_jumps = {}
factor_choices = [0.85, 0.9, 1.1, 1.15]
for n in range(10):
fx_jumps[random.randrange(10000)] = random.choice(factor_choices)
# Run the simulation
if print_it:
print_headers()
for n in range(10000):
fx_jump_factor = fx_jumps.get(n, 1.0)
next_step(algo, scenario, fx_jump_factor)
if print_it:
print_state()
# Drop the prefix blocks to be left with the simulation blocks
simul = states[N:]
block_times = [simul[n + 1].timestamp - simul[n].timestamp
for n in range(len(simul) - 1)]
return block_times
def main():
'''Outputs CSV data to stdout. Final stats to stderr.'''
parser = argparse.ArgumentParser('Run a mining simulation')
parser.add_argument('-a', '--algo', metavar='algo', type=str,
choices = list(Algos.keys()),
default = 'k-1', help='algorithm choice')
parser.add_argument('-s', '--scenario', metavar='scenario', type=str,
choices = list(Scenarios.keys()),
default = 'default', help='scenario choice')
parser.add_argument('-r', '--seed', metavar='seed', type=int,
default = None, help='random seed')
parser.add_argument('-n', '--count', metavar='count', type=int,
default = 1, help='count of simuls to run')
args = parser.parse_args()
count = max(1, args.count)
algo = Algos.get(args.algo)
scenario = Scenarios.get(args.scenario)
seed = int(time.time()) if args.seed is None else args.seed
to_stderr = partial(print, file=sys.stderr)
to_stderr("Starting seed {} for {} simuls".format(seed, count))
means = []
std_devs = []
medians = []
maxs = []
for loop in range(count):
random.seed(seed)
seed += 1
block_times = run_one_simul(algo, scenario, count == 1)
means.append(statistics.mean(block_times))
std_devs.append(statistics.stdev(block_times))
medians.append(sorted(block_times)[len(block_times) // 2])
maxs.append(max(block_times))
def stats(text, values):
if count == 1:
to_stderr('{} {}s'.format(text, values[0]))
else:
to_stderr('{}(s) Range {:0.1f}-{:0.1f} Mean {:0.1f} '
'Std Dev {:0.1f} Median {:0.1f}'
.format(text, min(values), max(values),
statistics.mean(values),
statistics.stdev(values),
sorted(values)[len(values) // 2]))
stats("Mean block time", means)
stats("StdDev block time", std_devs)
stats("Median block time", medians)
stats("Max block time", maxs)
if __name__ == '__main__':
main()