-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsacdm_wave2.py
204 lines (136 loc) · 3.74 KB
/
sacdm_wave2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Standard python numerical analysis imports:
import numpy as np
from scipy import signal
from scipy.interpolate import interp1d
from scipy.signal import butter, filtfilt, iirdesign, zpk2tf, freqz
from scipy.signal import find_peaks, peak_prominences
from scipy.io.wavfile import read, write
from numpy.fft import fft, ifft
#import pandas as pd
#import peakutils
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
#import h5py
import sys
from scipy.interpolate import spline
# Calcula SAC-DM medio total utilizando a funcao find_peaks do Python
def sac_dm_avg(data):
peaks, _ = find_peaks(data)
npeaks = 0.0 + len(peaks)
n = len(data)
return npeaks/n
# Calcula SAC-DM utilizando a funcao find_peaks do Python
def sac_dm(data, N):
M = len(data)
size = 1 + int(M)/N
sacdm=[0.0] * size
inicio = 0
fim = N
for k in range(size):
peaks, _ = find_peaks(data[inicio:fim])
v = np.array(peaks)
sacdm[k] = 1.0*len(v)/N
inicio = fim
fim = fim + N
return sacdm
# Calcula SAC-AM (amplitude media dos maximos) utilizando a funcao find_peaks do Python
def sac_am(data, N):
M = len(data)
size = 1 + int(M)/N
sacdm=[0.0] * size
inicio = 0
fim = N
for k in range(size):
peaks, _ = find_peaks(data[inicio:fim])
v = np.abs(data[peaks])
s = sum(v)
sacdm[k] = 1.0*s/N
inicio = fim
fim = fim + N
return sacdm
def sac_dm_file_old(filename, N, threshold):
# Este e o unico ponto que voce deve configurar, de acordo com o formato do arquivo de entrada
#data = np.genfromtxt(filename, delimiter=',', names=['x', 'y','z','s','t'])
#data = np.genfromtxt(filename, delimiter=';', names=['y', 'z','x'])
Fs, data = read(filename)
data = data[:,0]
#print 'Frequencia de amostragem do audio: ', Fs
N = Fs
#data = np.genfromtxt(filename, delimiter=' ', names=['y'])
#index = peakutils.indexes(data['y'], thres=threshold, min_dist=distance)
M = len(data)
#M = 50000
#print "Numero de amostras: ", M
rho = 0.0
size = 1 + int(M)/N
sacdm=[0.0] * size
sacam=[0.0] * size
amp = 0
peaks = 0.0
i = 0
n = N
j = 0
while i < M-2:
a = data[i]
b = data[i+1]
c = data[i+2]
if b > (a*(1+threshold)) and b > (c*(1+threshold)):
peaks = peaks + 1
if (b-a)>(b-c):
amp = amp + (b-c)
else:
amp = amp + (b-a)
if i == n:
rho = peaks/float(N)
sacam = amp/float(N)
if rho != 0:
sacdm[j] = rho
#sacdm[j]=1/(6*rho)
#print "peaks: ", peaks , " N: ", N, " rho: ", rho, "sacdm: ", sacdm[j]
else:
sacdm[j] = 0
j = j + 1
n = n + N
peaks = 0.0
amp = 0.0
i = i+1
#plot SAC-DM:
#print data
return sacdm, sacam, data
def get_data_from_wav(filename):
Fs, data = read(filename)
data = data[:,0]
return data, Fs
#file1 = "ddos/dados/maccdc2012_00008_tratado_pacotes.csv"
#file2 = "ddos/dados/access.log_pacotesporsegundo"
threshold = 0.0
data, N = get_data_from_wav(sys.argv[1])
data2, N2 = get_data_from_wav(sys.argv[2])
sac = sac_am(data, N)
avg = np.average(sac)
sac2 = sac_am(data2, N2)
avg2 = np.average(sac2)
print sys.argv[1], ";", avg
print sys.argv[2], ";", avg2
fig3 = plt.figure()
plt.ylabel('Peaks/sec.')
plt.xlabel('Time (sec.)')
ax3 = fig3.add_subplot(111)
ax3.set_title("SAC-AM")
ax3.plot(sac,color='r', label='With queen')
ax3.plot(sac2,color='g', label='Without queen')
ax3.legend(['Hive with a queen', 'Hive without a queen'], loc='upper right')
#ax3.legend(['y = MACCD2', 'y = Outro'], loc='upper left')
plt.savefig(sys.argv[1] + ".png")
#plt.show()
'''
fig = plt.figure()
plt.ylabel('dB')
plt.xlabel('Time (sec.)')
ax = fig.add_subplot(111)
ax.set_title("Sound")
ax.plot(sinal,color='r', label='With queen')
ax.plot(sinal2,color='g', label='Without queen')
ax.legend(['Hive with a queen', 'Hive without a queen'], loc='upper right')
plt.show()
'''