-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.c
1109 lines (942 loc) · 46 KB
/
run.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <time.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#if defined(__SSE__) || defined(__SSE2__) || defined(__AVX2__) || defined(__AVX512BW__)
#include <xmmintrin.h>
#endif
#include "run.h"
int map_unordered = 0;
#include "stats.h"
#ifdef __AVX512BW__
#define MAX_MULTIPLE_HITS 32
const int simd_mul[INDEL_DATA_VECTOR_SIZE] = {32, 32, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4};
unsigned int(* const simd_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned char *, int *, unsigned char *) = {
&alignment_avx512bw__align_tria,
&alignment_avx512bw__align_tria,
&alignment_avx512bw__align_hexa,
&alignment_avx512bw__align_hexa,
&alignment_avx512bw__align_octa,
&alignment_avx512bw__align_octa,
&alignment_avx512bw__align_octa,
&alignment_avx512bw__align_octa,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad,
&alignment_avx512bw__align_quad
};
void(* const simd_init_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int) = {
&alignment_avx512bw__init_tria,
&alignment_avx512bw__init_tria,
&alignment_avx512bw__init_hexa,
&alignment_avx512bw__init_hexa,
&alignment_avx512bw__init_octa,
&alignment_avx512bw__init_octa,
&alignment_avx512bw__init_octa,
&alignment_avx512bw__init_octa,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad,
&alignment_avx512bw__init_quad
};
const int simd_N_BYTE_table[INDEL_DATA_VECTOR_SIZE] = {2, 2, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
void(* const simd_clean_fct)() = &alignment_avx512bw__clean;
#define SIMD_SUPPORT_CHECK {if (!alignment_avx512bw__compatible_proc()) {ERROR__("\nCPU is not compatible with AVX512BW instructions set.\nExiting.\n"); exit(1);}}
#else
#ifdef __AVX2__
#define MAX_MULTIPLE_HITS 16
const int simd_mul[INDEL_DATA_VECTOR_SIZE] = {16, 16, 8, 8, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2};
unsigned int(* const simd_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned char *, int *, unsigned char *) = {
&alignment_avx2__align_hexa,
&alignment_avx2__align_hexa,
&alignment_avx2__align_octa,
&alignment_avx2__align_octa,
&alignment_avx2__align_quad,
&alignment_avx2__align_quad,
&alignment_avx2__align_quad,
&alignment_avx2__align_quad,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair,
&alignment_avx2__align_pair
};
void(* const simd_init_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int) = {
&alignment_avx2__init_hexa,
&alignment_avx2__init_hexa,
&alignment_avx2__init_octa,
&alignment_avx2__init_octa,
&alignment_avx2__init_quad,
&alignment_avx2__init_quad,
&alignment_avx2__init_quad,
&alignment_avx2__init_quad,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair,
&alignment_avx2__init_pair
};
const int simd_N_BYTE_table[INDEL_DATA_VECTOR_SIZE] = {2, 2, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
void(* const simd_clean_fct)() = &alignment_avx2__clean;
#define SIMD_SUPPORT_CHECK {if (!alignment_avx2__compatible_proc()) {ERROR__("\nCPU is not compatible with AVX2 instructions set.\nExiting.\n"); exit(1);}}
#else
#ifdef __SSE2__
#define MAX_MULTIPLE_HITS 8
const int simd_mul[INDEL_DATA_VECTOR_SIZE] = {8, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1};
unsigned int(* const simd_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned char *, int *, unsigned char *) = {
&alignment_sse2__align_octa,
&alignment_sse2__align_octa,
&alignment_sse2__align_quad,
&alignment_sse2__align_quad,
&alignment_sse2__align_pair,
&alignment_sse2__align_pair,
&alignment_sse2__align_pair,
&alignment_sse2__align_pair,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono,
&alignment_sse2__align_mono
};
void(* const simd_init_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int) = {
&alignment_sse2__init_octa,
&alignment_sse2__init_octa,
&alignment_sse2__init_quad,
&alignment_sse2__init_quad,
&alignment_sse2__init_pair,
&alignment_sse2__init_pair,
&alignment_sse2__init_pair,
&alignment_sse2__init_pair,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono,
&alignment_sse2__init_mono
};
const int simd_N_BYTE_table[INDEL_DATA_VECTOR_SIZE] = {2, 2, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
void(* const simd_clean_fct)() = &alignment_sse2__clean;
#define SIMD_SUPPORT_CHECK {if (!alignment_sse2__compatible_proc()) {ERROR__("\nCPU is not compatible with SSE2 instructions set.\nExiting.\n"); exit(1);}}
#else
#ifdef __SSE__
#define MAX_MULTIPLE_HITS 4
const int simd_mul[INDEL_DATA_VECTOR_SIZE] = {4, 4, 2, 2, 1, 1, 1, 1};
unsigned int(* const simd_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned char *, int *, unsigned char *) = {
&alignment_sse__align_quad,
&alignment_sse__align_quad,
&alignment_sse__align_pair,
&alignment_sse__align_pair,
&alignment_sse__align_mono,
&alignment_sse__align_mono,
&alignment_sse__align_mono,
&alignment_sse__align_mono
};
void(* const simd_init_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int) = {
&alignment_sse__init_quad,
&alignment_sse__init_quad,
&alignment_sse__init_pair,
&alignment_sse__init_pair,
&alignment_sse__init_mono,
&alignment_sse__init_mono,
&alignment_sse__init_mono,
&alignment_sse__init_mono
};
const int simd_N_BYTE_table[INDEL_DATA_VECTOR_SIZE] = {2, 2, 4, 4, 8, 8, 8, 8};
void(* const simd_clean_fct)() = &alignment_sse__clean;
#define SIMD_SUPPORT_CHECK {if (!alignment_sse__compatible_proc()) {ERROR__("\nCPU is not compatible with SSE instructions set.\nExiting.\n"); exit(1);}}
#else
#warning "No __AVX512BW__, __AVX2__, __SSE2__, __SSE__ defined : this program will be slow !!"
#define MAX_MULTIPLE_HITS 1
void fake_init (unsigned int match,
unsigned int mismatch,
unsigned int gapopen,
unsigned int gapextends,
unsigned int threshold,
unsigned int readlength) {}
int fake_align (unsigned char * genome,
int * pos_genome,
unsigned char * read) { return 1; /* 0x01 */}
void fake_clean () {return; }
const int simd_mul[INDEL_DATA_VECTOR_SIZE] = {1, 1, 1, 1, 1, 1, 1, 1};
void(* const simd_init_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, unsigned int) = {
&fake_init,
&fake_init,
&fake_init,
&fake_init,
&fake_init,
&fake_init,
&fake_init,
&fake_init
};
int(* const simd_fct_table[INDEL_DATA_VECTOR_SIZE])(unsigned char *, int *, unsigned char *) = {
&fake_align,
&fake_align,
&fake_align,
&fake_align,
&fake_align,
&fake_align,
&fake_align,
&fake_align
};
const int simd_N_BYTE_table[INDEL_DATA_VECTOR_SIZE] = {1, 1, 1, 1, 1, 1, 1, 1};
void(* const simd_clean_fct)() = &fake_clean;
#define SIMD_SUPPORT_CHECK {VERB_FILTER(VERBOSITY_MODERATE, WARNING__("\n This program has been compiled without any __AVX512BW__, __AVX2__, __SSE2__, __SSE__ defined : it will be slow !!\n Good night ...\n"));}
#endif
#endif
#endif
#endif
int SHOW_TRACEBACK_PATTERNS = 0;
int LIST_UNMAPPED_READS = 0;
int UNIQUENESS = 0;
int UNIQUENESS_SCORE_THRESHOLD = 0;
int PRINT_ALL_READS = 0;
/*
* #define __DONT__MAP__
*/
/**
* Perform an alignment between two sequences
* @param read_str First sequence (color/nucleotide uncompressed code)
* @param ref_str Second sequence (color/nucleotide uncompressed code)
* @param ref_masked_str Second sequence mask (uncompressed code)
* @param read quality values for the first sequence
* @param match
* @param mismatch
* @param gap_open
* @param gap_extend
* @param allowed_indels
* @param output The output file descriptor
*/
int single_alignment(const char* read_str, const char* ref_str, const char* ref_masked_str, const char* qual_str,
const ScoreType match, const ScoreType mismatch, const ScoreType gap_open, const ScoreType gap_extend, const int allowed_indels,
FILE* output) {
CODE_TYPE* read = string_to_code(read_str);
CODE_TYPE* ref = string_to_code(ref_str);
CODE_TYPE* ref_masked = string_to_code(ref_masked_str);
int read_len = strlen(read_str);
short *quality = NULL;
ScoreType best;
AlignmentType* alignment;
VERBOSITY = VERBOSITY_MODERATE;
if (qual_str) {
quality = parse_integer_sequence(qual_str, read_len);
}
alignment = alignment__create_single(read, quality, strlen(read_str), ref, ref_masked, strlen(ref_str), allowed_indels);
alignment__set_params(alignment, match, mismatch, gap_open, gap_extend);
best = alignment__align(alignment, MIN_SCORE);
fprintf(output, "\n%s\n", alignment__traceback(alignment));
fprintf(output, "Score: %d\n\n", best);
alignment__destroy(alignment);
free(read);
free(ref);
if (quality) {
free(quality);
}
return best;
}
/*------------------------------------------------------------------------------------------------------
* For multithreaded execution via openmp, some data structures need to be cloned for each thread
*/
#ifdef _OPENMP
/* Heap/Key/Hit Structures for each process (allocated per thread order, to avoid page conflicts between threads) */
/* [FIXME] must allocate alignment here to ensure that pagging will be "malloc contiguous" for each thread ... and moreover "page" distant between two threads */
#define HEAP_KEY_HIT_REVSEQ__DECLARE HitType ** heaps = NULL; int *** keys = NULL; int *** hit_pointers = NULL; ReadDataType * tmp_sequence = NULL;
#define HEAP_KEY_HIT_REVSEQ__ALLOC(__heap_size__,__nb_seeds__,__read_len__) { \
int t; \
SAFE_FAILURE__ALLOC(heaps, MAX_THREADS, HitType*); \
SAFE_FAILURE__ALLOC(keys, MAX_THREADS, int**); \
SAFE_FAILURE__ALLOC(hit_pointers, MAX_THREADS, int**); \
SAFE_FAILURE__ALLOC(tmp_sequence, MAX_THREADS, ReadDataType); \
for (t = 0; t < MAX_THREADS; ++t) { \
SAFE_FAILURE__ALLOC(heaps[t], __heap_size__, HitType); \
SAFE_FAILURE__ALLOC(keys[t], __nb_seeds__, int *); \
SAFE_FAILURE__ALLOC(hit_pointers[t], __nb_seeds__, int *); \
SAFE_FAILURE__ALLOC(tmp_sequence[t].sequence, __read_len__, CODE_TYPE); \
tmp_sequence[t].quality = NULL; \
int u; \
for (u = 0; u < __nb_seeds__; ++u) { \
SAFE_FAILURE__ALLOC(keys[t][u], __read_len__, int); \
SAFE_FAILURE__ALLOC(hit_pointers[t][u], __read_len__, int); \
} \
} \
}
#define KEY_HIT__RESET(__nb_seeds__,__read_len__) { \
int u; \
for (u = 0; u < __nb_seeds__; ++u) { \
memset(key[u], '\xff', __read_len__*sizeof(int)); \
memset(hit_pointer[u], '\xff', __read_len__*sizeof(int)); \
} \
}
#define HEAP__REF (heaps[_ogtn])
#define KEY__REF (keys[_ogtn])
#define HIT_POINTER__REF (hit_pointers[_ogtn])
#define HEAP_KEY_HIT_REVSEQ__DESTROY(__nb_seeds__) { \
int t; \
for (t = 0; t < MAX_THREADS; ++t) { \
int u; \
for (u = 0; u < __nb_seeds__; ++u) { \
free(keys[t][u]); \
free(hit_pointers[t][u]); \
} \
free(heaps[t]); \
free(keys[t]); \
free(hit_pointers[t]); \
free(tmp_sequence[t].sequence); \
if (tmp_sequence[t].quality) { \
free(tmp_sequence[t].quality); \
} \
} \
free(heaps); \
free(keys); \
free(hit_pointers); \
free(tmp_sequence); \
}
/* Alignment Structures for each process */
#define ALIGNMENT__DECLARE AlignmentType* alignment = NULL
#define ALIGNMENT__INIT(read_len, ref_len, allowed_indels, match, mismatch, gap_open, gap_extend) { \
int t; \
SAFE_FAILURE__ALLOC(alignment, MAX_THREADS, AlignmentType); \
for (t = 0; t < MAX_THREADS; ++t) { \
alignment__init(&alignment[t], read_len, ref_len, allowed_indels); \
alignment__set_params(&alignment[t], match, mismatch, gap_open, gap_extend); \
} \
}
#define ALIGNMENT__RESET_READ(read, quality) { \
alignment__reset_with_compressed_read(&alignment[_ogtn], read, quality); \
}
#define ALIGNMENT__REF &alignment[_ogtn]
#define ALIGNMENT__DESTROY { \
int t; \
for (t = 0; t < MAX_THREADS; ++t) { \
alignment__destroy(&alignment[t]); \
} \
free(alignment); \
}
/* Reverse complementary data for each process */
#define REV_SEQ__REF(tmp_sequence) &tmp_sequence[_ogtn]
#define REV_SEQ__SEQ_REF(tmp_sequence) tmp_sequence[_ogtn].sequence
#define REV_SEQ__QUAL_REF(tmp_sequence) tmp_sequence[_ogtn].quality
#else
/* Heap/Key/Hit Structures for each process */
#ifndef NUCLEOTIDES
#define HEAP_KEY_HIT_REVSEQ__DECLARE HitType * heap = NULL; int ** key = NULL; int ** hit_pointer = NULL; ReadDataType tmp_sequence = {.info = NULL, .first_base = 0, .first_qual = 0, .quality = NULL, .sequence = NULL, .tag = 0};
#else
#define HEAP_KEY_HIT_REVSEQ__DECLARE HitType * heap = NULL; int ** key = NULL; int ** hit_pointer = NULL; ReadDataType tmp_sequence = {.info = NULL, .quality = NULL, .sequence = NULL, .tag = 0};
#endif
#define HEAP_KEY_HIT_REVSEQ__ALLOC(__heap_size__,__nb_seeds__,__read_len__) { \
SAFE_FAILURE__ALLOC(heap, __heap_size__, HitType); \
SAFE_FAILURE__ALLOC(key, __nb_seeds__, int *); \
SAFE_FAILURE__ALLOC(hit_pointer, __nb_seeds__, int *); \
SAFE_FAILURE__ALLOC(tmp_sequence.sequence, __read_len__, CODE_TYPE); \
tmp_sequence.quality = NULL; \
int u; \
for (u = 0; u < __nb_seeds__; ++u) { \
SAFE_FAILURE__ALLOC(key[u], __read_len__, int); \
SAFE_FAILURE__ALLOC(hit_pointer[u], __read_len__, int); \
} \
}
#define KEY_HIT__RESET(__nb_seeds__,__read_len__) { \
int u; \
for (u = 0; u < __nb_seeds__; ++u) { \
memset(key[u], '\xff', __read_len__*sizeof(int)); \
memset(hit_pointer[u], '\xff', __read_len__*sizeof(int)); \
} \
}
#define HEAP__REF (heap)
#define KEY__REF (key)
#define HIT_POINTER__REF (hit_pointer)
#define HEAP_KEY_HIT_REVSEQ__DESTROY(__nb_seeds__) { \
int u; \
for (u = 0; u < __nb_seeds__; ++u) { \
free(key[u]); \
free(hit_pointer[u]); \
} \
free(heap); \
free(key); \
free(hit_pointer); \
free(tmp_sequence.sequence); \
if (tmp_sequence.quality) { \
free(tmp_sequence.quality); \
} \
}
/* Alignment Structure */
#define ALIGNMENT__DECLARE AlignmentType alignment
#define ALIGNMENT__INIT(read_len, ref_len, allowed_indels, match, mismatch, gap_open, gap_extend) { \
alignment__init(&alignment, read_len, ref_len, allowed_indels); \
alignment__set_params(&alignment, match, mismatch, gap_open, gap_extend); \
}
#define ALIGNMENT__RESET_READ(read, quality) { \
alignment__reset_with_compressed_read(&alignment, read, quality); \
}
#define ALIGNMENT__REF &alignment
#define ALIGNMENT__DESTROY alignment__destroy(&alignment)
/* Reverse complementary data */
#define REV_SEQ__REF(tmp_sequence) &tmp_sequence
#define REV_SEQ__SEQ_REF(tmp_sequence) tmp_sequence.sequence
#define REV_SEQ__QUAL_REF(tmp_sequence) tmp_sequence.quality
#endif
/*---------------------------------------------->8--------------------------------------------------------*/
/** The HitType structure for heap-sorting hits along a read.
* This structure is used to "order" along the reference genome, all the hits per read,
* The main idea is to keep "cache consistency" when many hits occurs : even if sorting seems slower than just
* processing then in theory, in practice accessing random hits is not cache-efficient.
* This structure is used in a heap sorting process where each key code, for each seed, and for each read position,
* is set in a heap. When a hit occurs and is the minimal one on the reference, it is immediatly replaced by the
* next hit (for the same seed and same read position) in the heap. As such, all the different keys are
* reference-coherent crossed for each read (by now, this is done read by read ... but may be better if several
* reads are processed in parallel).
* The size of the Heap is < (number of seeds) x (read length) which seems reasonable for "short reads".
*/
typedef struct HitType {
/** hit position on the current reference */
int hit_pos;
/** hit position on the read */
short read_pos;
/** seed id that generate this hit */
short seed_id;
} __attribute__((__packed__)) HitType;
/** insert at position $__size__$ then sieve from bottom to top (increment $__size__$) */
#define INSERT_HEAP(__heap__,__size__,__hit_pos__,__read_pos__,__seed_id__) \
{ \
int __u__ = __size__; \
int __t__ = (__u__-1)>>1; \
while ( \
(__u__ > 0) \
&& \
(__hit_pos__ < (__heap__)[__t__].hit_pos) \
) { \
(__heap__)[__u__] = (__heap__)[__t__]; \
__u__ = __t__; \
__t__ = (__u__-1)>>1; \
} \
(__heap__)[__u__].hit_pos = __hit_pos__ ; \
(__heap__)[__u__].read_pos = __read_pos__ ; \
(__heap__)[__u__].seed_id = __seed_id__ ; \
__size__ ++; \
}
/** replace at position $0$ (erase previous element) then sieve from top to bottom */
#define REP_TOP_SIEVE_HEAP(__heap__,__size__,__hit_pos__,__read_pos__,__seed_id__) \
{ \
int __u__ = 0; \
while (__u__ < __size__) { \
int __u_min__ = __u__; \
int __min__ = __hit_pos__; \
if ( 2*__u__+1 < __size__) { \
if ((__heap__)[2*__u__+1].hit_pos < __min__) { \
__u_min__ = 2*__u__+1; \
__min__ = (__heap__)[2*__u__+1].hit_pos; \
} \
if ( 2*__u__+2 < __size__) { \
if ((__heap__)[2*__u__+2].hit_pos < __min__) { \
__u_min__ = 2*__u__+2; \
} \
} \
} \
if (__u_min__ == __u__) \
break; \
(__heap__)[__u__] = (__heap__)[__u_min__]; \
__u__ = __u_min__; \
} \
(__heap__)[__u__].hit_pos = __hit_pos__ ; \
(__heap__)[__u__].read_pos = __read_pos__ ; \
(__heap__)[__u__].seed_id = __seed_id__ ; \
}
/** delete at position $0$ (by using the last element in the sieve) then sieve from top to bottom */
#define DEL_TOP_SIEVE_HEAP(__heap__,__size__) \
{ \
__size__ -- ; \
int __hit_pos__ = (__heap__)[__size__].hit_pos; \
int __read_pos__ = (__heap__)[__size__].read_pos; \
int __seed_id__ = (__heap__)[__size__].seed_id; \
REP_TOP_SIEVE_HEAP(__heap__,__size__,__hit_pos__,__read_pos__,__seed_id__) \
}
/**
* Find and register in a hit_map all the extended hits found for one given read
* This part is the most time consuming in SToRM
* @param read_seq The read's sequence to be processed
* @param read_len The read's sequence length
* @param read_id The read's index (for updating the map only)
* @param ref_id The reference's index (for updating the map only)
* @param seeds_count The number of seeds available
* @param indexes An array of indexes of the current ref (one per seed)
* @param alignment The alignment data structure
* @param map The read map to update with good alignments
* @param simd_allowed_diags number of diagonal allowed for the simd code (for selection the right simd function)
* @param alignment_sens alignement done in forward/reverse (sequence already reversed, for updating the map only)
*/
static inline void process_read(
HitType * heap, int ** key, int ** hit_pointer,
CODE_TYPE* read_seq, const int read_len, const int read_id,
const int ref_id, int seeds_count,
IndexType** indexes,
AlignmentType* alignment, HitMapType* map,
const int simd_allowed_diags,
const int alignment_sense) {
int I = alignment->params.allowed_indels;
CODE_TYPE* ref_seq = ((ReferenceDBType*)indexes[0]->db)->sequence;
CODE_TYPE* ref_seq_masked = ((ReferenceDBType*)indexes[0]->db)->sequence_masked;
ScoreType score_threshold = min_accepted_score;
/* reset key and hit_pointer */
KEY_HIT__RESET(seeds_count,read_len);
/*
* (1) first fill heap : at most one element (hit) in the heap per (read_pos,seed_id)
*/
int heap_size = 0;
int si;
for (si = 0; si < seeds_count; ++si) {
if (indexes[si]->seed->positions) {
int k;
for (k = 0; k < indexes[si]->seed->positions_count; ++k) {
int read_pos = indexes[si]->seed->positions[k];
key[si][read_pos] = seed__apply_to_compressed(indexes[si]->seed, read_seq, read_pos);
int ref_pos = index__get_extern_next_hit(indexes[si], key[si][read_pos], hit_pointer[si]+read_pos);
if (ref_pos >= 0) {
ref_pos -= read_pos;
#if defined(__SSE__) || defined(__SSE2__) || defined(__AVX2__) || defined(__AVX512BW__)
#include <xmmintrin.h>
_mm_prefetch((char*)ref_seq + (ref_pos >> 2), _MM_HINT_T0);
#endif
INSERT_HEAP(heap,heap_size,ref_pos,read_pos,si);
}
}
} else {
int read_pos;
for (read_pos = 0; read_pos < read_len - indexes[si]->seed->length + 1; ++read_pos) {
key[si][read_pos] = seed__apply_to_compressed(indexes[si]->seed, read_seq, read_pos);
int ref_pos = index__get_extern_next_hit(indexes[si], key[si][read_pos], hit_pointer[si]+read_pos);
if (ref_pos >= 0) {
ref_pos -= read_pos;
#if defined(__SSE__) || defined(__SSE2__) || defined(__AVX2__) || defined(__AVX512BW__)
_mm_prefetch((char*)ref_seq + (ref_pos >> 2), _MM_HINT_T0);
#endif
INSERT_HEAP(heap,heap_size,ref_pos,read_pos,si);
}
}
}
}
/*
* (2) then find the smallest hit, update the simd search array, and run the simd search when array is full
*/
#ifdef DOUBLE_HIT
int old_old_hit_pos = -I;
#endif
int old_hit_pos = -I;
int hits_pos_index = 0;
int hits_pos[MAX_MULTIPLE_HITS] = {0};
int simd_win_start[MAX_MULTIPLE_HITS] = {0};
while (heap_size) {
int hit_pos = heap[0].hit_pos;
short read_pos = heap[0].read_pos;
short seed_id = heap[0].seed_id;
#if defined(__SSE__) || defined(__SSE2__) || defined(__AVX2__) || defined(__AVX512BW__)
_mm_prefetch((char*)ref_seq + (hit_pos >> 2), _MM_HINT_T0);
#endif
/* heap update can be done in parallel with ...*/
int new_ref_pos = index__get_extern_next_hit(indexes[seed_id], key[seed_id][read_pos], hit_pointer[seed_id]+read_pos);
if (new_ref_pos >= 0) {
new_ref_pos -= read_pos;
#if defined(__SSE__) || defined(__SSE2__) || defined(__AVX2__) || defined(__AVX512BW__)
_mm_prefetch((char*)ref_seq + (new_ref_pos >> 2), _MM_HINT_T1);
#endif
REP_TOP_SIEVE_HEAP(heap,heap_size,new_ref_pos,read_pos,seed_id);
} else {
DEL_TOP_SIEVE_HEAP(heap,heap_size);
}
/* ... managing hits and alignments */
#ifdef DOUBLE_HIT /* only double hits with at most "I" indels between the two hits are selected (the second condition avoids double selection on same diagonal) */
if ((hit_pos <= old_hit_pos + I) && ((hit_pos > old_hit_pos) || ((hit_pos == old_hit_pos) && (old_hit_pos > old_old_hit_pos)))) {
#else /* all the single hits are extended */
if (hit_pos > old_hit_pos) {
#endif
hits_pos[hits_pos_index] = hit_pos;
simd_win_start[hits_pos_index] = hit_pos - simd_allowed_diags;
hits_pos_index++; hits_pos_index %= simd_mul[simd_allowed_diags];
VERB_FILTER(VERBOSITY_ANNOYING, INFO__("\nRead:%d@[%d]: HIT Reference:%d@[%d]", read_id, read_pos, ref_id, hit_pos););
if (hits_pos_index == 0) {
/* alignment with the simd_mul[simd_allowed_diags] hits found */
/* fast filtering using the SIMD alignment functions */
unsigned int x = simd_fct_table[simd_allowed_diags](ref_seq, simd_win_start, read_seq);
int p = 0;
/* check which alignment has a hit (if any, thus when x != 0)*/
while (x != 0) {
if (x & 1) {
int ref_window = MAX(hits_pos[p] - I, -simd_allowed_diags);
VERB_FILTER(VERBOSITY_ANNOYING, INFO__("\nRead:%d[%d] PASSED SIMD FILTER Reference:%d@[%d]", read_id, read_pos, ref_id, ref_window););
alignment__reset_with_compressed_ref(alignment, ref_seq, ref_seq_masked, ref_window);
/* if the hit is not in a region that has already been checked, and the alignment score is acceptable, memorize it */
ScoreType score;
if ((score = alignment__align(alignment, score_threshold)) > score_threshold) {
alignment__traceback(alignment);
/* display the alignment */
VERB_FILTER(VERBOSITY_HIGH, INFO__("\nReference:%d@[%d-%d], Read:%d@[%d–%d]\n%sScore:%d\n", ref_id, ref_window + alignment->best_j0, ref_window + alignment->best_j, read_id, alignment->best_i0, alignment->best_i, alignment->to_display, score););
/* memorize in a map */
hit_map__update(map, read_id, ref_id, ref_window, alignment, alignment_sense);
if (map->map[read_id][MAP_DETAIL_SIZE-1].score > score_threshold) {
score_threshold = map->map[read_id][MAP_DETAIL_SIZE-1].score;
}
}
}
/* next alignment in the SIMD result (binary flag output)*/
x >>= 1;
++p;
}
}
}
#ifdef DOUBLE_HIT
old_old_hit_pos = old_hit_pos;
#endif
old_hit_pos = hit_pos;
}
/*
* (3) last hits kept in the simd search array must be processed too ...
*/
if (hits_pos_index) {
/* fill the vector */
while (hits_pos_index) {
hits_pos[hits_pos_index] = hits_pos[hits_pos_index-1];
simd_win_start[hits_pos_index] = simd_win_start[hits_pos_index-1];
hits_pos_index++; hits_pos_index %= simd_mul[simd_allowed_diags];
}
/* fast filtering using the SIMD alignment functions */
unsigned int x = simd_fct_table[simd_allowed_diags](ref_seq, simd_win_start, read_seq);
int p = 0;
/* check which alignment has a hit (if any, thus when x != 0)*/
while (x != 0) {
if (x & 1) {
int ref_window = MAX(hits_pos[p] - I, -simd_allowed_diags);
VERB_FILTER(VERBOSITY_ANNOYING, INFO__("\nRead %d PASSED SIMD FILTER Reference@%d", read_id, ref_window););
alignment__reset_with_compressed_ref(alignment, ref_seq, ref_seq_masked, ref_window);
/* if the hit is not in a region that has already been checked, and the alignment score is acceptable, memorize it */
ScoreType score;
if ((score = alignment__align(alignment, score_threshold)) > score_threshold) {
alignment__traceback(alignment);
/* display the alignment */
VERB_FILTER(VERBOSITY_HIGH, INFO__("\nReference@%d, Read %d\n%sScore: %d\n", ref_window + alignment->best_j0, read_id, alignment->to_display, score););
/* memorize in a map */
hit_map__update(map, read_id, ref_id, ref_window, alignment, alignment_sense);
if (map->map[read_id][MAP_DETAIL_SIZE-1].score > score_threshold) {
score_threshold = map->map[read_id][MAP_DETAIL_SIZE-1].score;
}
}
}
/* next alignment in the SIMD result (binary flag output)*/
x >>= 1;
++p;
}
}
}
/**
* Reads mapped on a reference
* @param reads_filename
* @param qual_filename
* @param ref_filename
* @param seed_list
* @param match
* @param mismatch
* @param gap_open
* @param gap_extend
* @param allowd_indels
* @param output
* @param unmapped_FASTQ_output
*/
int reads_against_references(const char* reads_filename, const char* qual_filename, const char* ref_filename,
const char* seedslist,
const ScoreType match, const ScoreType mismatch, const ScoreType gap_open, const ScoreType gap_extend, const int allowed_indels, const int simd_allowed_diags,
FILE* output, FILE* unmapped_FASTQ_output) {
ReadsDBType reads_db;
ReferenceDBType* ref_dbs;
int ref_dbs_size;
IndexType** ref_index;
SeedType ** seeds;
SIMD_SUPPORT_CHECK;
#ifdef _OPENMP
omp_set_dynamic(0);
omp_set_num_threads(MAX_THREADS);
#endif
ALIGNMENT__DECLARE;
HEAP_KEY_HIT_REVSEQ__DECLARE;
HitMapType* map;
time_t start_time = time(NULL), crt_time, crt_time1;
/* global variable used to allocate the correct number of byte after each ALLOC, in order to enable block reading without alarming valgrind */
N_BYTES = simd_N_BYTE_table[simd_allowed_diags];
/* create seeds */
int seeds_count = seed__parse_list(seedslist, &seeds);
/* verify seed validity */
if (seeds_count == RETURN_INPUT_ERR) {
ERROR__("The seed pattern is invalid: \"%s\".\nExpected: {0,1}+ or {-,#}+ with at least one '1'/'#' (seed separator ';').", seedslist);
exit (RETURN_INPUT_ERR);
} else if (seeds_count <= 0) {
ERROR__("The seed input is invalid: \"%s\".\nPlease provide at least one seed.", seedslist);
exit (RETURN_INPUT_ERR);
}
VERB_FILTER(VERBOSITY_MODERATE,
INFO__("The following %d seed%s will be used:\n", seeds_count, (seeds_count > 1 ? "s" : ""));
int si; for (si = 0; si < seeds_count; ++si) seed__display(seeds[si]);
MESSAGE__("\n");
);
VERB_FILTER(VERBOSITY_MODERATE, INFO__("\n\nLoading sequences...\n"););
/* load the two databases */
/* load the reads */
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Loading reads database...\n"););
crt_time = time(NULL);
if (load_reads_db(reads_filename, qual_filename, &reads_db) <= 0) {
ERROR__("Reads could not be loaded. Exiting.");
exit (RETURN_INPUT_ERR);
}
map = hit_map__create(reads_db.size, allowed_indels);
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Loaded %ld reads (read length %d) in %ld seconds.\n\n", reads_db.size, reads_db.read_len, time(NULL) - crt_time););
/* sort reads (by using the "maximum" lexicographic common subword of size 32 for each read by now ... ) to get cache efficient read order during the search
* -> clustering for cache efficiency is an interesting question!!
*/
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Sorting reads database...\n"););
crt_time = time(NULL);
sort_reads_db(&reads_db);
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Sorted %ld reads in %ld seconds.\n\n", reads_db.size, time(NULL) - crt_time););
/* load the reference */
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Loading reference database...\n"););
crt_time = time(NULL);
if ((ref_dbs_size = load_reference_db(ref_filename, reads_db.read_len, &ref_dbs)) <= 0) {
ERROR__("Reference could not be loaded. Exiting.");
exit(RETURN_INPUT_ERR);
}
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Loaded %d reference sequence%s in %ld seconds.\n\n", ref_dbs_size, (ref_dbs_size == 1 ? "" : "s"), time(NULL) - crt_time););
/* SIMD filter initialization */
simd_init_fct_table[simd_allowed_diags](ABS(match), ABS(mismatch), ABS(gap_open), ABS(gap_extend), min_accepted_score_simd_filter, reads_db.read_len);
/* compute heap size needed */
int heap_size = 0;
{
int si;
for (si = 0; si < seeds_count; ++si) {
if (seeds[si]->positions)
heap_size += seeds[si]->positions_count;
else
heap_size += reads_db.read_len; /* it's enought : used to keep distances between threads pages */
}
}
/* create indexes */
SAFE_FAILURE__ALLOC(ref_index, seeds_count, IndexType*);
/* create alignment data */
int ref_window_len = reads_db.read_len + (allowed_indels<<1);
ALIGNMENT__INIT(reads_db.read_len, ref_window_len, allowed_indels, match, mismatch, gap_open, gap_extend);
/* create Heaps,Key,Hits,Revseq used by threads */
HEAP_KEY_HIT_REVSEQ__ALLOC(heap_size,seeds_count,reads_db.read_len);
crt_time = time(NULL);
/* process each reference sequence */
{
int ref_id;
for (ref_id = 0; ref_id < ref_dbs_size; ++ref_id) {
ReferenceDBType* ref_db = &ref_dbs[ref_id];
#ifdef NUCLEOTIDES
VERB_FILTER(VERBOSITY_MODERATE, INFO__("\n\nProcessing reference sequence %s (%d of %d, %d bases)...\n", ref_db->name?ref_db->name:"(null)", ref_id + 1, ref_dbs_size, ref_db->size););
#else
VERB_FILTER(VERBOSITY_MODERATE, INFO__("\n\nProcessing reference sequence %s (%d of %d, %d colors)...\n", ref_db->name?ref_db->name:"(null)", ref_id + 1, ref_dbs_size, ref_db->size););
#endif
/* create index */
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Creating reference index...\n"););
crt_time1 = time(NULL);
{
int si;
#ifdef _OPENMP
#pragma omp parallel for ordered shared(ref_index, ref_window_len, ref_db, seeds)
#endif
for (si = 0; si < seeds_count; ++si) {
ref_index[si] = index__build_reference(ref_db, seeds[si]);
}
}
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Created %d indexes in %ld seconds.\n\n", seeds_count, time(NULL) - crt_time1););
/* on each read, pass each seed, find the hits, and align */
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Start search...\n"););
crt_time1 = time(NULL);
if (ALIGNMENT_SENSE & ALIGNMENT_SENSE_FORWARD) {
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Forward...\n"););
int p_read_id = 0;
int read_id;
VERB_FILTER(VERBOSITY_MODERATE, display_progress(p_read_id, reads_db.size, map->mapped););
#ifdef _OPENMP
#pragma omp parallel for shared(p_read_id, reads_db, ref_index, seeds) schedule(dynamic,256)
#endif
for (read_id = 0; read_id < reads_db.size; ++read_id) {
#ifdef _OPENMP
const int _ogtn = omp_get_thread_num();
#endif
/* set the read */
ALIGNMENT__RESET_READ(reads_db.reads[read_id].sequence, reads_db.reads[read_id].quality);
process_read(HEAP__REF, KEY__REF, HIT_POINTER__REF,
(reads_db.reads[read_id]).sequence, reads_db.read_len, read_id,
ref_id, seeds_count,
ref_index,
ALIGNMENT__REF, map,
simd_allowed_diags, ALIGNMENT_SENSE_FORWARD
);
/* do not display this progress bar if other details (such as specific local alignments) are also displayed. */
VERB_FILTER(VERBOSITY_MODERATE,
if ( !(p_read_id & 0x3ff) ) {
display_progress(p_read_id, reads_db.size, map->mapped);
}
);
#ifdef _OPENMP
#pragma omp atomic
#endif
p_read_id++;
}
VERB_FILTER(VERBOSITY_MODERATE, display_progress(reads_db.size, reads_db.size, map->mapped););
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Forward completed in %ld seconds, %d of %d reads aligned.\n\n", time(NULL) - crt_time1, map->mapped, map->size));
}
crt_time1 = time(NULL);
if (ALIGNMENT_SENSE & ALIGNMENT_SENSE_REVERSE) {
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Reverse complementary...\n"););
int p_read_id = 0;
int read_id;
VERB_FILTER(VERBOSITY_MODERATE, display_progress(p_read_id, reads_db.size, map->mapped));
#ifdef _OPENMP
#pragma omp parallel for shared(p_read_id, reads_db, ref_index, seeds) schedule(dynamic,256)
#endif
for (read_id = 0; read_id < reads_db.size; ++read_id) {
#ifdef _OPENMP
const int _ogtn = omp_get_thread_num();
#endif
/* set the read */
read__reverse(&reads_db.reads[read_id], REV_SEQ__REF(tmp_sequence), reads_db.read_len);
ALIGNMENT__RESET_READ(REV_SEQ__SEQ_REF(tmp_sequence), REV_SEQ__QUAL_REF(tmp_sequence));
process_read(HEAP__REF, KEY__REF, HIT_POINTER__REF,
REV_SEQ__SEQ_REF(tmp_sequence), reads_db.read_len, read_id,
ref_id, seeds_count,
ref_index,
ALIGNMENT__REF, map,
simd_allowed_diags, ALIGNMENT_SENSE_REVERSE
);
/* do not display this progress bar if other details (such as specific local alignments) are also displayed. */
VERB_FILTER(VERBOSITY_MODERATE,
if ( !(p_read_id & 0x3ff) ) {
display_progress(p_read_id, reads_db.size, map->mapped);
}
);
#ifdef _OPENMP
#pragma omp atomic
#endif
p_read_id++;
}
VERB_FILTER(VERBOSITY_MODERATE, display_progress(reads_db.size, reads_db.size, map->mapped));
VERB_FILTER(VERBOSITY_MODERATE, MESSAGE__("Reverse complementary completed in %ld seconds, %d of %d reads aligned.\n\n", time(NULL) - crt_time1, map->mapped, map->size));
}
/* clear the index for each seed of the current reference */
{
int si;
for (si = 0; si < seeds_count; ++si) {
index__destroy(ref_index[si]);
free(ref_index[si]);
ref_index[si] = NULL;
}
}
} /* for (ref_id = 0; ref_id < ref_counts; ++ref_id) */
}
/* clear SIMD allocated data */
simd_clean_fct();
/* clear the seeds */