forked from HadoopIt/rnn-nlu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq_classification.py
134 lines (118 loc) · 6 KB
/
seq_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 28 15:28:44 2016
@author: Bing Liu ([email protected])
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange # pylint: disable=redefined-builtin
# We disable pylint because we need python3 compatibility.
import tensorflow as tf
from tensorflow.python.ops import rnn_cell_impl
linear = rnn_cell_impl._linear
def attention_single_output_decoder(initial_state,
attention_states,
output_size=None,
num_heads=1,
dtype=tf.float32,
scope=None,
sequence_length=tf.ones([16]),
initial_state_attention=True,
use_attention=False):
if num_heads < 1:
raise ValueError("With less than 1 heads, use a non-attention decoder.")
if not attention_states.get_shape()[1:2].is_fully_defined():
raise ValueError("Shape[1] and [2] of attention_states must be known: %s"
% attention_states.get_shape())
with tf.variable_scope(scope or "decoder_single_output"):
# print (initial_state.eval().shape)
batch_size = tf.shape(initial_state)[0] # Needed for reshaping.
# print (attention_states.get_shape())
attn_length = attention_states.get_shape()[1].value
attn_size = attention_states.get_shape()[2].value
# To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
hidden = tf.reshape(
attention_states, [-1, attn_length, 1, attn_size])
hidden_features = []
v = []
attention_vec_size = attn_size # Size of query vectors for attention.
for a in xrange(num_heads):
k = tf.get_variable("AttnW_%d" % a,
[1, 1, attn_size, attention_vec_size])
hidden_features.append(tf.nn.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
v.append(tf.get_variable("AttnV_%d" % a,
[attention_vec_size]))
# state = initial_state
def attention(query, use_attention=False):
"""Put attention masks on hidden using hidden_features and query."""
attn_weights = []
ds = [] # Results of attention reads will be stored here.
for i in xrange(num_heads):
with tf.variable_scope("Attention_%d" % i):
# y = linear(query, attention_vec_size, True)
y = linear(query, attention_vec_size, True)
y = tf.reshape(y, [-1, 1, 1, attention_vec_size])
# Attention mask is a softmax of v^T * tanh(...).
s = tf.reduce_sum(
v[i] * tf.tanh(hidden_features[i] + y), [2, 3])
if use_attention is False: # apply mean pooling
weights = tf.tile(sequence_length, tf.stack([attn_length]))
weights = tf.reshape(weights, tf.shape(s))
a = tf.ones(tf.shape(s), dtype=dtype) / tf.to_float(weights)
# a = tf.ones(tf.shape(s), dtype=dtype) / tf.to_float(tf.shape(s)[1])
else:
a = tf.nn.softmax(s)
attn_weights.append(a)
# Now calculate the attention-weighted vector d.
d = tf.reduce_sum(
tf.reshape(a, [-1, attn_length, 1, 1]) * hidden,
[1, 2])
ds.append(tf.reshape(d, [-1, attn_size]))
return attn_weights, ds
batch_attn_size = tf.stack([batch_size, attn_size])
attns = [tf.zeros(batch_attn_size, dtype=dtype)
for _ in xrange(num_heads)]
for a in attns: # Ensure the second shape of attention vectors is set.
a.set_shape([None, attn_size])
if initial_state_attention:
attn_weights, attns = attention(initial_state, use_attention=use_attention)
#with variable_scope.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Out_Matrix", [attn_size, output_size])
res = tf.matmul(attns[0], matrix)
# NOTE: here we temporarily assume num_head = 1
bias_start = 0.0
bias_term = tf.get_variable("Out_Bias",
[output_size],
initializer=tf.constant_initializer(bias_start))
output = res + bias_term
# NOTE: here we temporarily assume num_head = 1
return attention_states, attn_weights[0], attns[0], [output]
def generate_single_output(encoder_state, attention_states, sequence_length,
targets, num_classes, buckets,
use_mean_attention=False,
softmax_loss_function=None, per_example_loss=False,
name=None, use_attention=False):
all_inputs = targets
with tf.name_scope(name, "model_with_buckets", all_inputs):
with tf.variable_scope(tf.get_variable_scope(),
reuse=None):
single_outputs = attention_single_output_decoder(encoder_state,
attention_states,
output_size=num_classes,
num_heads=1,
sequence_length=sequence_length,
use_attention=use_attention)
_, _, _, bucket_outputs = single_outputs
if softmax_loss_function is None:
assert len(bucket_outputs) == len(targets) == 1
# We need to make target and int64-tensor and set its shape.
bucket_target = tf.reshape(tf.to_int64(targets[0]), [-1])
crossent = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=bucket_outputs[0], labels=bucket_target)
else:
assert len(bucket_outputs) == len(targets) == 1
crossent = softmax_loss_function(bucket_outputs[0], targets[0])
batch_size = tf.shape(targets[0])[0]
loss = tf.reduce_sum(crossent) / tf.cast(batch_size, tf.float32)
return bucket_outputs, loss