-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathtrain.py
executable file
·115 lines (82 loc) · 3.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torchnet as tnt
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
from torchnet.engine import Engine
from torchnet.logger import VisdomPlotLogger
from tqdm import tqdm
from data_utils import DatasetFromFolder
from model import Net
from psnrmeter import PSNRMeter
def processor(sample):
data, target, training = sample
data = Variable(data)
target = Variable(target)
if torch.cuda.is_available():
data = data.cuda()
target = target.cuda()
output = model(data)
loss = criterion(output, target)
return loss, output
def on_sample(state):
state['sample'].append(state['train'])
def reset_meters():
meter_psnr.reset()
meter_loss.reset()
def on_forward(state):
meter_psnr.add(state['output'].data, state['sample'][1])
meter_loss.add(state['loss'].data[0])
def on_start_epoch(state):
reset_meters()
scheduler.step()
state['iterator'] = tqdm(state['iterator'])
def on_end_epoch(state):
print('[Epoch %d] Train Loss: %.4f (PSNR: %.2f db)' % (
state['epoch'], meter_loss.value()[0], meter_psnr.value()))
train_loss_logger.log(state['epoch'], meter_loss.value()[0])
train_psnr_logger.log(state['epoch'], meter_psnr.value())
reset_meters()
engine.test(processor, val_loader)
val_loss_logger.log(state['epoch'], meter_loss.value()[0])
val_psnr_logger.log(state['epoch'], meter_psnr.value())
print('[Epoch %d] Val Loss: %.4f (PSNR: %.2f db)' % (
state['epoch'], meter_loss.value()[0], meter_psnr.value()))
torch.save(model.state_dict(), 'epochs/epoch_%d_%d.pt' % (UPSCALE_FACTOR, state['epoch']))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train Super Resolution')
parser.add_argument('--upscale_factor', default=3, type=int, help='super resolution upscale factor')
parser.add_argument('--num_epochs', default=100, type=int, help='super resolution epochs number')
opt = parser.parse_args()
UPSCALE_FACTOR = opt.upscale_factor
NUM_EPOCHS = opt.num_epochs
train_set = DatasetFromFolder('data/train', upscale_factor=UPSCALE_FACTOR, input_transform=transforms.ToTensor(),
target_transform=transforms.ToTensor())
val_set = DatasetFromFolder('data/val', upscale_factor=UPSCALE_FACTOR, input_transform=transforms.ToTensor(),
target_transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_set, num_workers=4, batch_size=64, shuffle=True)
val_loader = DataLoader(dataset=val_set, num_workers=4, batch_size=64, shuffle=False)
model = Net(upscale_factor=UPSCALE_FACTOR)
criterion = nn.MSELoss()
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
print('# parameters:', sum(param.numel() for param in model.parameters()))
optimizer = optim.Adam(model.parameters(), lr=1e-2)
scheduler = MultiStepLR(optimizer, milestones=[30, 80], gamma=0.1)
engine = Engine()
meter_loss = tnt.meter.AverageValueMeter()
meter_psnr = PSNRMeter()
train_loss_logger = VisdomPlotLogger('line', opts={'title': 'Train Loss'})
train_psnr_logger = VisdomPlotLogger('line', opts={'title': 'Train PSNR'})
val_loss_logger = VisdomPlotLogger('line', opts={'title': 'Val Loss'})
val_psnr_logger = VisdomPlotLogger('line', opts={'title': 'Val PSNR'})
engine.hooks['on_sample'] = on_sample
engine.hooks['on_forward'] = on_forward
engine.hooks['on_start_epoch'] = on_start_epoch
engine.hooks['on_end_epoch'] = on_end_epoch
engine.train(processor, train_loader, maxepoch=NUM_EPOCHS, optimizer=optimizer)