-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathquick_start.py
221 lines (185 loc) · 8.74 KB
/
quick_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#
# Copyright (c) 2022-2024, ETH Zurich, Matias Mattamala, Jonas Frey.
# All rights reserved. Licensed under the MIT license.
# See LICENSE file in the project root for details.
#
from wild_visual_navigation import WVN_ROOT_DIR
from wild_visual_navigation.feature_extractor import FeatureExtractor
from wild_visual_navigation.cfg import ExperimentParams
from wild_visual_navigation.image_projector import ImageProjector
from wild_visual_navigation.model import get_model
from wild_visual_navigation.utils import ConfidenceGenerator
from wild_visual_navigation.utils import AnomalyLoss
from PIL import Image
import torch
import numpy as np
import torch.nn.functional as F
from omegaconf import OmegaConf
from wild_visual_navigation.utils import Data
from os.path import join
import os
from argparse import ArgumentParser
from wild_visual_navigation.model import get_model
from pathlib import Path
from wild_visual_navigation.visu import LearningVisualizer
# Function to handle folder creation
def parse_folders(args):
input_image_folder = args.input_image_folder
output_folder = args.output_folder_name
# Check if input folder is global or local
if not os.path.isabs(input_image_folder):
input_image_folder = os.path.join(WVN_ROOT_DIR, "assets", input_image_folder)
# Check if output folder is global or local
if not os.path.isabs(output_folder):
output_folder = os.path.join(WVN_ROOT_DIR, "results", output_folder)
# Create input folder if it doesn't exist
if not os.path.exists(input_image_folder):
raise ValueError(f"Input folder '{input_image_folder}' does not exist.")
# Create output folder if it doesn't exist
if not os.path.exists(output_folder):
os.makedirs(output_folder)
return input_image_folder, output_folder
if __name__ == "__main__":
parser = ArgumentParser()
# Define command line arguments
parser.add_argument("--model_name", default="indoor_mpi", help="Description of model name argument")
parser.add_argument(
"--input_image_folder",
default="demo_data",
help="Gloabl path or folder name within the assests directory",
)
parser.add_argument(
"--output_folder_name",
default="demo_data",
help="Gloabl path or folder name within the results directory",
)
# Fixed values
parser.add_argument("--network_input_image_height", type=int, default=224, help="Height of the input image")
parser.add_argument("--network_input_image_width", type=int, default=224, help="Width of the input image")
parser.add_argument(
"--segmentation_type",
default="stego",
choices=["slic", "grid", "random", "stego"],
help="Options: slic, grid, random, stego",
)
parser.add_argument(
"--feature_type", default="stego", choices=["dino", "dinov2", "stego"], help="Options: dino, dinov2, stego"
)
parser.add_argument("--dino_patch_size", type=int, default=8, choices=[8, 16], help="Options: 8, 16")
parser.add_argument("--dino_backbone", default="vit_small", choices=["vit_small"], help="Options: vit_small")
parser.add_argument(
"--slic_num_components", type=int, default=100, help="Number of components for SLIC segmentation"
)
parser.add_argument(
"--compute_confidence", action="store_true", help="Compute confidence for the traversability prediction"
)
parser.add_argument("--no-compute_confidence", dest="compute_confidence", action="store_false")
parser.set_defaults(compute_confidence=True)
parser.add_argument(
"--prediction_per_pixel", action="store_true", help="Inference traversability per-pixel or per-segment"
)
parser.add_argument("--no-prediction_per_pixel", dest="prediction_per_pixel", action="store_false")
parser.set_defaults(prediction_per_pixel=True)
# Parse the command line arguments
args = parser.parse_args()
input_image_folder, output_folder = parse_folders(args)
params = OmegaConf.structured(ExperimentParams)
anomaly_detection = False
# Update model from file if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
visualizer = LearningVisualizer(p_visu=output_folder, store=True)
if anomaly_detection:
confidence_generator = ConfidenceGenerator(
method=params.loss_anomaly.method, std_factor=params.loss_anomaly.confidence_std_factor
)
else:
confidence_generator = ConfidenceGenerator(
method=params.loss.method, std_factor=params.loss.confidence_std_factor
)
# Load feature and segment extractor
feature_extractor = FeatureExtractor(
device=device,
segmentation_type=args.segmentation_type,
feature_type=args.feature_type,
patch_size=args.dino_patch_size,
backbone_type=args.dino_backbone,
input_size=args.network_input_image_height,
slic_num_components=args.slic_num_components,
)
# Sorry for that 💩
params.model.simple_mlp_cfg.input_size = feature_extractor.feature_dim
params.model.double_mlp_cfg.input_size = feature_extractor.feature_dim
params.model.simple_gcn_cfg.input_size = feature_extractor.feature_dim
params.model.linear_rnvp_cfg.input_size = feature_extractor.feature_dim
# Load traversability model
model = get_model(params.model).to(device)
model.eval()
torch.set_grad_enabled(False)
p = join(WVN_ROOT_DIR, "assets", "checkpoints", f"{args.model_name}.pt")
model_state_dict = torch.load(p)
model.load_state_dict(model_state_dict, strict=False)
print(f"\nLoaded model `{args.model_name}` successfully!")
cg = model_state_dict["confidence_generator"]
# Only mean and std are needed
confidence_generator.var = cg["var"]
confidence_generator.mean = cg["mean"]
confidence_generator.std = cg["std"]
images = [str(s) for s in Path(input_image_folder).rglob("*.png" or "*.jpg")]
print(f"Found {len(images)} images in the folder! \n")
H, W = args.network_input_image_height, args.network_input_image_width
for i, img_p in enumerate(images):
print(f"Processing image {i+1}/{len(images)}: {img_p}")
img = Image.open(img_p)
img = img.convert("RGB")
torch_image = torch.from_numpy(np.array(img))
torch_image = torch_image.to(device).permute(2, 0, 1).float() / 255.0
C, H_in, W_in = torch_image.shape
# K can be ignored given that no reprojection is performed
image_projector = ImageProjector(
K=torch.eye(4, device=device)[None],
h=H_in,
w=W_in,
new_h=H,
new_w=W,
)
torch_image = image_projector.resize_image(torch_image)
# Extract features
_, feat, seg, center, dense_feat = feature_extractor.extract(
img=torch_image[None],
return_centers=False,
return_dense_features=True,
n_random_pixels=100,
)
# Forward pass to predict traversability
if args.prediction_per_pixel:
# Pixel-wise traversability prediction using the dense features
data = Data(x=dense_feat[0].permute(1, 2, 0).reshape(-1, dense_feat.shape[1]))
else:
# input_feat = dense_feat[0].permute(1, 2, 0).reshape(-1, dense_feat.shape[1])
# Segment-wise traversability prediction using the average feature per segment
input_feat = feat[seg.reshape(-1)]
data = Data(x=input_feat)
# Inference model
prediction = model.forward(data)
# Calculate traversability
if not anomaly_detection:
out_trav = prediction.reshape(H, W, -1)[:, :, 0]
else:
losses = prediction["logprob"].sum(1) + prediction["log_det"]
confidence = confidence_generator.inference_without_update(x=-losses)
trav = confidence
out_trav = trav.reshape(H, W, -1)[:, :, 0]
original_img = visualizer.plot_image(torch_image, store=False)
img_ls = [original_img]
if args.compute_confidence:
# Calculate confidence
loss_reco = F.mse_loss(prediction[:, 1:], data.x, reduction="none").mean(dim=1)
confidence = confidence_generator.inference_without_update(x=loss_reco)
out_confidence = confidence.reshape(H, W)
conf_img = visualizer.plot_detectron_classification(torch_image, out_confidence, store=False)
img_ls.append(conf_img)
name = img_p.split("/")[-1].split(".")[0]
trav_img = visualizer.plot_detectron_classification(torch_image, out_trav, store=False)
print(out_trav.sum(), out_trav.max(), torch_image.sum(), data.x.sum(), dense_feat.sum(), torch_image.sum())
img_ls.append(trav_img)
visualizer.plot_list(img_ls, tag=f"{name}_original_conf_trav", store=True)