forked from HongwenZhang/PyMAF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
383 lines (334 loc) · 17.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""
# This script is borrowed and extended from https://github.com/nkolot/SPIN/blob/master/eval.py
This script can be used to evaluate a trained model on 3D pose/shape and masks/part segmentation. You first need to download the datasets and preprocess them.
Example usage:
```
python3 eval.py --checkpoint=data/model_checkpoint.pt --dataset=h36m-p1 --log_freq=20
```
Running the above command will compute the MPJPE and Reconstruction Error on the Human3.6M dataset (Protocol I). The ```--dataset``` option can take different values based on the type of evaluation you want to perform:
1. Human3.6M Protocol 1 ```--dataset=h36m-p1```
2. Human3.6M Protocol 2 ```--dataset=h36m-p2```
3. 3DPW ```--dataset=3dpw```
4. LSP ```--dataset=lsp```
5. MPI-INF-3DHP ```--dataset=mpi-inf-3dhp```
"""
import os
import cv2
import torch
import argparse
import scipy.io
import numpy as np
import torchgeometry as tgm
from tqdm import tqdm
from torch.utils.data import DataLoader
from datasets import BaseDataset
from models import hmr, SMPL, pymaf_net
from core import constants, path_config
from core.cfgs import parse_args
from utils.imutils import uncrop
from utils.uv_vis import vis_smpl_iuv
from utils.pose_utils import reconstruction_error
from utils.part_utils import PartRenderer # used by lsp
import logging
logger = logging.getLogger(__name__)
# Define command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint')
parser.add_argument('--dataset', choices=['h36m-p1', 'h36m-p2', 'h36m-p2-mosh', 'lsp', '3dpw', 'mpi-inf-3dhp', '3doh50k'],
default='h36m-p2', help='Choose evaluation dataset')
parser.add_argument('--batch_size', default=32, type=int, help='Batch size for testing')
parser.add_argument('--log_freq', default=50, type=int, help='Frequency of printing intermediate results')
parser.add_argument('--regressor', type=str, choices=['hmr', 'pymaf_net'], default='pymaf_net', help='Name of the SMPL regressor.')
parser.add_argument('--cfg_file', type=str, default='configs/pymaf_config.yaml', help='config file path for PyMAF.')
parser.add_argument('--misc', default=None, type=str, nargs="*", help='other parameters')
parser.add_argument('--shuffle', default=False, action='store_true', help='Shuffle data')
parser.add_argument('--num_workers', default=8, type=int, help='Number of processes for data loading')
parser.add_argument('--result_file', default=None, help='If set, save detections to a .npz file')
parser.add_argument('--eval_pve', default=False, action='store_true', help='evaluate PVE')
parser.add_argument('--vis_demo', default=False, action='store_true', help='result visualization')
parser.add_argument('--ratio', default=1, type=int, help='image size ration for visualization')
def run_evaluation(model, dataset):
"""Run evaluation on the datasets and metrics we report in the paper. """
shuffle = args.shuffle
log_freq = args.log_freq
batch_size = args.batch_size
dataset_name = args.dataset
result_file = args.result_file
num_workers = args.num_workers
device = torch.device('cuda') if torch.cuda.is_available() \
else torch.device('cpu')
# Transfer model to the GPU
model.to(device)
# Load SMPL model
smpl_neutral = SMPL(path_config.SMPL_MODEL_DIR,
create_transl=False).to(device)
smpl_male = SMPL(path_config.SMPL_MODEL_DIR,
gender='male',
create_transl=False).to(device)
smpl_female = SMPL(path_config.SMPL_MODEL_DIR,
gender='female',
create_transl=False).to(device)
renderer = PartRenderer()
# Regressor for H36m joints
J_regressor = torch.from_numpy(np.load(path_config.JOINT_REGRESSOR_H36M)).float()
save_results = result_file is not None
# Disable shuffling if you want to save the results
if save_results:
shuffle=False
# Create dataloader for the dataset
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
# Pose metrics
# MPJPE and Reconstruction error for the non-parametric and parametric shapes
mpjpe = np.zeros(len(dataset))
recon_err = np.zeros(len(dataset))
pve = np.zeros(len(dataset))
# Mask and part metrics
# Accuracy
accuracy = 0.
parts_accuracy = 0.
# True positive, false positive and false negative
tp = np.zeros((2,1))
fp = np.zeros((2,1))
fn = np.zeros((2,1))
parts_tp = np.zeros((7,1))
parts_fp = np.zeros((7,1))
parts_fn = np.zeros((7,1))
# Pixel count accumulators
pixel_count = 0
parts_pixel_count = 0
# Store SMPL parameters
smpl_pose = np.zeros((len(dataset), 72))
smpl_betas = np.zeros((len(dataset), 10))
smpl_camera = np.zeros((len(dataset), 3))
pred_joints = np.zeros((len(dataset), 17, 3))
action_idxes = {}
idx_counter = 0
# for each action
act_PVE = {}
act_MPJPE = {}
act_paMPJPE = {}
eval_pose = False
eval_masks = False
eval_parts = False
# Choose appropriate evaluation for each dataset
if dataset_name == 'h36m-p1' or dataset_name == 'h36m-p2' or dataset_name == 'h36m-p2-mosh' \
or dataset_name == '3dpw' or dataset_name == 'mpi-inf-3dhp' or dataset_name == '3doh50k':
eval_pose = True
elif dataset_name == 'lsp':
eval_masks = True
eval_parts = True
annot_path = path_config.DATASET_FOLDERS['upi-s1h']
joint_mapper_h36m = constants.H36M_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.H36M_TO_J14
joint_mapper_gt = constants.J24_TO_J17 if dataset_name == 'mpi-inf-3dhp' else constants.J24_TO_J14
# Iterate over the entire dataset
cnt = 0
results_dict = {'id': [], 'pred': [], 'pred_pa': [], 'gt': []}
for step, batch in enumerate(tqdm(data_loader, desc='Eval', total=len(data_loader))):
# Get ground truth annotations from the batch
gt_pose = batch['pose'].to(device)
gt_betas = batch['betas'].to(device)
gt_smpl_out = smpl_neutral(betas=gt_betas, body_pose=gt_pose[:, 3:], global_orient=gt_pose[:, :3])
gt_vertices_nt = gt_smpl_out.vertices
images = batch['img'].to(device)
gender = batch['gender'].to(device)
curr_batch_size = images.shape[0]
if save_results:
s_id = np.array([int(item.split('/')[-3][-1]) for item in batch['imgname']]) * 10000
s_id += np.array([int(item.split('/')[-1][4:-4]) for item in batch['imgname']])
results_dict['id'].append(s_id)
if dataset_name == 'h36m-p2':
action = [im_path.split('/')[-1].split('.')[0].split('_')[1] for im_path in batch['imgname']]
for act_i in range(len(action)):
if action[act_i] in action_idxes:
action_idxes[action[act_i]].append(idx_counter + act_i)
else:
action_idxes[action[act_i]] = [idx_counter + act_i]
idx_counter += len(action)
with torch.no_grad():
if args.regressor == 'hmr':
pred_rotmat, pred_betas, pred_camera = model(images)
# torch.Size([32, 24, 3, 3]) torch.Size([32, 10]) torch.Size([32, 3])
elif args.regressor == 'pymaf_net':
preds_dict, _ = model(images)
pred_rotmat = preds_dict['smpl_out'][-1]['rotmat'].contiguous().view(-1, 24, 3, 3)
pred_betas = preds_dict['smpl_out'][-1]['theta'][:, 3:13].contiguous()
pred_camera = preds_dict['smpl_out'][-1]['theta'][:, :3].contiguous()
pred_output = smpl_neutral(betas=pred_betas, body_pose=pred_rotmat[:,1:], global_orient=pred_rotmat[:,0].unsqueeze(1), pose2rot=False)
pred_vertices = pred_output.vertices
if save_results:
rot_pad = torch.tensor([0,0,1], dtype=torch.float32, device=device).view(1,3,1)
rotmat = torch.cat((pred_rotmat.view(-1, 3, 3), rot_pad.expand(curr_batch_size * 24, -1, -1)), dim=-1)
pred_pose = tgm.rotation_matrix_to_angle_axis(rotmat).contiguous().view(-1, 72)
smpl_pose[step * batch_size:step * batch_size + curr_batch_size, :] = pred_pose.cpu().numpy()
smpl_betas[step * batch_size:step * batch_size + curr_batch_size, :] = pred_betas.cpu().numpy()
smpl_camera[step * batch_size:step * batch_size + curr_batch_size, :] = pred_camera.cpu().numpy()
# 3D pose evaluation
if eval_pose:
# Regressor broadcasting
J_regressor_batch = J_regressor[None, :].expand(pred_vertices.shape[0], -1, -1).to(device)
# Get 14 ground truth joints
if 'h36m' in dataset_name or 'mpi-inf' in dataset_name or '3doh50k' in dataset_name:
gt_keypoints_3d = batch['pose_3d'].cuda()
gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_gt, :-1]
# For 3DPW get the 14 common joints from the rendered shape
else:
gt_vertices = smpl_male(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices
gt_vertices_female = smpl_female(global_orient=gt_pose[:,:3], body_pose=gt_pose[:,3:], betas=gt_betas).vertices
gt_vertices[gender==1, :, :] = gt_vertices_female[gender==1, :, :]
gt_keypoints_3d = torch.matmul(J_regressor_batch, gt_vertices)
gt_pelvis = gt_keypoints_3d[:, [0],:].clone()
gt_keypoints_3d = gt_keypoints_3d[:, joint_mapper_h36m, :]
gt_keypoints_3d = gt_keypoints_3d - gt_pelvis
if '3dpw' in dataset_name:
per_vertex_error = torch.sqrt(((pred_vertices - gt_vertices) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
else:
per_vertex_error = torch.sqrt(((pred_vertices - gt_vertices_nt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
pve[step * batch_size:step * batch_size + curr_batch_size] = per_vertex_error
# Get 14 predicted joints from the mesh
pred_keypoints_3d = torch.matmul(J_regressor_batch, pred_vertices)
if save_results:
pred_joints[step * batch_size:step * batch_size + curr_batch_size, :, :] = pred_keypoints_3d.cpu().numpy()
pred_pelvis = pred_keypoints_3d[:, [0],:].clone()
pred_keypoints_3d = pred_keypoints_3d[:, joint_mapper_h36m, :]
pred_keypoints_3d = pred_keypoints_3d - pred_pelvis
# Absolute error (MPJPE)
error = torch.sqrt(((pred_keypoints_3d - gt_keypoints_3d) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
mpjpe[step * batch_size:step * batch_size + curr_batch_size] = error
# Reconstuction_error
r_error, pred_keypoints_3d_pa = reconstruction_error(pred_keypoints_3d.cpu().numpy(), gt_keypoints_3d.cpu().numpy(), reduction=None)
recon_err[step * batch_size:step * batch_size + curr_batch_size] = r_error
if save_results:
results_dict['gt'].append(gt_keypoints_3d.cpu().numpy())
results_dict['pred'].append(pred_keypoints_3d.cpu().numpy())
results_dict['pred_pa'].append(pred_keypoints_3d_pa)
if args.vis_demo:
imgnames = [i_n.split('/')[-1] for i_n in batch['imgname']]
if args.regressor == 'hmr':
iuv_pred = None
images_vis = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1, 3, 1, 1)
images_vis = images_vis + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1, 3, 1, 1)
vis_smpl_iuv(images_vis.cpu().numpy(), pred_camera.cpu().numpy(), pred_output.vertices.cpu().numpy(),
smpl_neutral.faces, iuv_pred, 100 * per_vertex_error, imgnames,
os.path.join('./notebooks/output/demo_results', dataset_name, args.checkpoint.split('/')[-3]), args)
# If mask or part evaluation, render the mask and part images
if eval_masks or eval_parts:
mask, parts = renderer(pred_vertices, pred_camera)
# Mask evaluation (for LSP)
if eval_masks:
center = batch['center'].cpu().numpy()
scale = batch['scale'].cpu().numpy()
# Dimensions of original image
orig_shape = batch['orig_shape'].cpu().numpy()
for i in range(curr_batch_size):
# After rendering, convert imate back to original resolution
pred_mask = uncrop(mask[i].cpu().numpy(), center[i], scale[i], orig_shape[i]) > 0
# Load gt mask
gt_mask = cv2.imread(os.path.join(annot_path, batch['maskname'][i]), 0) > 0
# Evaluation consistent with the original UP-3D code
accuracy += (gt_mask == pred_mask).sum()
pixel_count += np.prod(np.array(gt_mask.shape))
for c in range(2):
cgt = gt_mask == c
cpred = pred_mask == c
tp[c] += (cgt & cpred).sum()
fp[c] += (~cgt & cpred).sum()
fn[c] += (cgt & ~cpred).sum()
f1 = 2 * tp / (2 * tp + fp + fn)
# Part evaluation (for LSP)
if eval_parts:
center = batch['center'].cpu().numpy()
scale = batch['scale'].cpu().numpy()
orig_shape = batch['orig_shape'].cpu().numpy()
for i in range(curr_batch_size):
pred_parts = uncrop(parts[i].cpu().numpy().astype(np.uint8), center[i], scale[i], orig_shape[i])
# Load gt part segmentation
gt_parts = cv2.imread(os.path.join(annot_path, batch['partname'][i]), 0)
# Evaluation consistent with the original UP-3D code
# 6 parts + background
for c in range(7):
cgt = gt_parts == c
cpred = pred_parts == c
cpred[gt_parts == 255] = 0
parts_tp[c] += (cgt & cpred).sum()
parts_fp[c] += (~cgt & cpred).sum()
parts_fn[c] += (cgt & ~cpred).sum()
gt_parts[gt_parts == 255] = 0
pred_parts[pred_parts == 255] = 0
parts_f1 = 2 * parts_tp / (2 * parts_tp + parts_fp + parts_fn)
parts_accuracy += (gt_parts == pred_parts).sum()
parts_pixel_count += np.prod(np.array(gt_parts.shape))
# Print intermediate results during evaluation
if step % log_freq == log_freq - 1:
if eval_pose:
print('MPJPE: ' + str(1000 * mpjpe[:step * batch_size].mean()))
print('Reconstruction Error: ' + str(1000 * recon_err[:step * batch_size].mean()))
print()
if eval_masks:
print('Accuracy: ', accuracy / pixel_count)
print('F1: ', f1.mean())
print()
if eval_parts:
print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
print()
# Save reconstructions to a file for further processing
if save_results:
np.savez(result_file, pred_joints=pred_joints, pose=smpl_pose, betas=smpl_betas, camera=smpl_camera)
for k in results_dict.keys():
results_dict[k] = np.concatenate(results_dict[k])
print(k, results_dict[k].shape)
scipy.io.savemat(result_file +'.mat', results_dict)
# Print final results during evaluation
print('*** Final Results ***')
try:
print(os.path.split(args.checkpoint)[-3:], args.dataset)
except:
pass
if eval_pose:
print('PVE: ' + str(1000 * pve.mean()))
print('MPJPE: ' + str(1000 * mpjpe.mean()))
print('Reconstruction Error: ' + str(1000 * recon_err.mean()))
print()
if eval_masks:
print('Accuracy: ', accuracy / pixel_count)
print('F1: ', f1.mean())
print()
if eval_parts:
print('Parts Accuracy: ', parts_accuracy / parts_pixel_count)
print('Parts F1 (BG): ', parts_f1[[0,1,2,3,4,5,6]].mean())
print()
if dataset_name == 'h36m-p2':
print('Note: PVE is not available for h36m-p2. To evaluate PVE, use h36m-p2-mosh instead.')
for act in action_idxes:
act_idx = action_idxes[act]
act_pve = [pve[i] for i in act_idx]
act_errors = [mpjpe[i] for i in act_idx]
act_errors_pa = [recon_err[i] for i in act_idx]
act_errors_mean = np.mean(np.array(act_errors)) * 1000.
act_errors_pa_mean = np.mean(np.array(act_errors_pa)) * 1000.
act_pve_mean = np.mean(np.array(act_pve)) * 1000.
act_MPJPE[act] = act_errors_mean
act_paMPJPE[act] = act_errors_pa_mean
act_PVE[act] = act_pve_mean
act_err_info = ['action err']
act_row = [str(act_paMPJPE[act]) for act in action_idxes] + [act for act in action_idxes]
act_err_info.extend(act_row)
print(act_err_info)
else:
act_row = None
if __name__ == '__main__':
args = parser.parse_args()
parse_args(args)
if args.regressor == 'pymaf_net':
model = pymaf_net(path_config.SMPL_MEAN_PARAMS, pretrained=False)
elif args.regressor == 'hmr':
model = hmr(path_config.SMPL_MEAN_PARAMS)
if args.checkpoint is not None:
checkpoint = torch.load(args.checkpoint)
strict = args.regressor != 'hmr'
model.load_state_dict(checkpoint['model'], strict=strict)
model.eval()
# Setup evaluation dataset
dataset = BaseDataset(args, args.dataset, is_train=False)
# Run evaluation
run_evaluation(model, dataset)