-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathorthogonal.py
105 lines (84 loc) · 3.64 KB
/
orthogonal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import torch.nn as nn
from parametrization import Parametrization
class Orthogonal(Parametrization):
""" Class that implements optimization restricted to the Stiefel manifold """
def __init__(self, input_size, output_size, initializer_skew, mode, param):
"""
mode: "static" or a tuple such that:
mode[0] == "dynamic"
mode[1]: int, K, the number of steps after which we should change the basis of the dyn triv
mode[2]: int, M, the number of changes of basis after which we should project back onto the manifold the basis. This is particularly helpful for small values of K.
param: A parametrization of in terms of skew-symmetyric matrices
"""
max_size = max(input_size, output_size)
A = torch.empty(max_size, max_size)
base = torch.empty(max_size, max_size)
super(Orthogonal, self).__init__(A, base, mode)
self.input_size = input_size
self.output_size = output_size
self.param = param
self.init_A = initializer_skew
self.init_base = nn.init.eye_
self.reset_parameters()
def reset_parameters(self):
self.init_A(self.A)
self.init_base(self.base)
def forward(self, input):
return input.matmul(self.B)
def retraction(self, A, base):
# This could be any parametrization of a tangent space
A = A.triu(diagonal=1)
A = A - A.t()
B = base.mm(self.param(A))
if self.input_size != self.output_size:
B = B[:self.input_size, :self.output_size]
return B
def project(self, base):
try:
# Compute the projection using the thin SVD decomposition
U, _, V = torch.svd(base, some=True)
return U.mm(V.t())
except RuntimeError:
# If the svd does not converge, fallback to the (thin) QR decomposition
x = base
if base.size(0) < base.size(1):
x = base.t()
ret = torch.qr(x, some=True).Q
if base.size(0) < base.size(1):
ret = ret.t()
return ret
class modrelu(nn.Module):
def __init__(self, features):
# For now we just support square layers
super(modrelu, self).__init__()
self.features = features
self.b = nn.Parameter(torch.Tensor(self.features))
self.reset_parameters()
def reset_parameters(self):
self.b.data.uniform_(-0.01, 0.01)
def forward(self, inputs):
norm = torch.abs(inputs)
biased_norm = norm + self.b
magnitude = nn.functional.relu(biased_norm)
phase = torch.sign(inputs)
return phase * magnitude
class OrthogonalRNN(nn.Module):
def __init__(self, input_size, hidden_size, initializer_skew, mode, param):
super(OrthogonalRNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.recurrent_kernel = Orthogonal(hidden_size, hidden_size, initializer_skew, mode, param=param)
self.input_kernel = nn.Linear(in_features=self.input_size, out_features=self.hidden_size, bias=False)
self.nonlinearity = modrelu(hidden_size)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_normal_(self.input_kernel.weight.data, nonlinearity="relu")
def default_hidden(self, input):
return input.new_zeros(input.size(0), self.hidden_size, requires_grad=False)
def forward(self, input, hidden):
input = self.input_kernel(input)
hidden = self.recurrent_kernel(hidden)
out = input + hidden
out = self.nonlinearity(out)
return out, out