Skip to content

Latest commit

 

History

History
85 lines (59 loc) · 2.95 KB

README.md

File metadata and controls

85 lines (59 loc) · 2.95 KB

ImageNet ResNet50

Reference implementations for self-supervised learning (SSL) methods on ImageNet with ResNet50 backbones.

Note

The benchmarks are still in beta phase and there will be breaking changes and frequent updates. PRs for new methods are highly welcome!

Goals

  • Provide easy to use/adapt reference implementations of SSL methods.
  • Implemented methods should be self-contained and use the Lightly building blocks. See simclr.py.
  • Remain as framework agnostic as possible. The benchmarks currently only rely on PyTorch and PyTorch Lightning.

Non-Goals

  • Lightly doesn't strive to be an end-to-end SSL framework with vast configuration options. Instead, we try to provide building blocks and examples to make it as easy as possible to build on top of existing SSL methods.

You can find benchmark results in our docs.

Run Benchmark

To run the benchmark first download the ImageNet ILSVRC2012 split from here: https://www.image-net.org/challenges/LSVRC/2012/.

Then start the benchmark with:

python main.py --epochs 100 --train-dir /datasets/imagenet/train --val-dir /datasets/imagenet/val --num-workers 12 --devices 2 --batch-size-per-device 128 --skip-finetune-eval

Or with SLURM, create the following script (run_imagenet.sh):

#!/bin/bash

#SBATCH --nodes=1
#SBATCH --gres=gpu:2            # Must match --devices argument
#SBATCH --ntasks-per-node=2     # Must match --devices argument
#SBATCH --cpus-per-task=16      # Must be >= --num-workers argument
#SBATCH --mem=0

eval "$(conda shell.bash hook)"

conda activate lightly-env
srun python main.py --epochs 100 --train-dir /datasets/imagenet/train --val-dir /datasets/imagenet/val --num-workers 12 --devices 2 --batch-size-per-device 128
conda deactivate

And run it with sbatch: sbatch run_imagenet.sh.

Configuration

To run the benchmark on specific methods use the --methods flag:

python main.py --epochs 100 --batch-size-per-device 128 --methods simclr byol

Training/evaluation steps can be skipped as follows:

python main.py --batch-size-per-device 128 \
    --epochs 0              # no pretraining
    --skip-knn-eval         # no KNN evaluation
    --skip-linear-eval      # no linear evaluation
    --skip-finetune-eval    # no finetune evaluation

ImageNet100

For ImageNet100 you have to adapt the dataset location and set number of classes to 100:

python main.py --train-dir /datasets/imagenet100/train --val-dir /datasets/imagenet100/val --num-classes 100 --epochs 100 --num-workers 12 --devices 2 --batch-size-per-device 128

Imagenette

For Imagenette you have to adapt the dataset location and set number of classes to 10:

python main.py --train-dir /datasets/imagenette2-320/train --val-dir /datasets/imagenette2-320/val --num-classes 10 --epochs 100 --num-workers 12 --devices 2 --batch-size-per-device 128