-
Notifications
You must be signed in to change notification settings - Fork 287
/
Copy pathlinear_eval.py
116 lines (106 loc) · 3.42 KB
/
linear_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from pathlib import Path
from typing import Dict
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import DeviceStatsMonitor, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger
from torch.nn import Module
from torch.utils.data import DataLoader
from torchvision import transforms as T
from lightly.data import LightlyDataset
from lightly.transforms.utils import IMAGENET_NORMALIZE
from lightly.utils.benchmarking import LinearClassifier, MetricCallback
from lightly.utils.dist import print_rank_zero
def linear_eval(
model: Module,
train_dir: Path,
val_dir: Path,
log_dir: Path,
batch_size_per_device: int,
num_workers: int,
accelerator: str,
devices: int,
precision: str,
num_classes: int,
) -> Dict[str, float]:
"""Runs a linear evaluation on the given model.
Parameters follow SimCLR [0] settings.
The most important settings are:
- Backbone: Frozen
- Epochs: 90
- Optimizer: SGD
- Base Learning Rate: 0.1
- Momentum: 0.9
- Weight Decay: 0.0
- LR Schedule: Cosine without warmup
References:
- [0]: SimCLR, 2020, https://arxiv.org/abs/2002.05709
"""
print_rank_zero("Running linear evaluation...")
# Setup training data.
train_transform = T.Compose(
[
T.RandomResizedCrop(224),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=IMAGENET_NORMALIZE["mean"], std=IMAGENET_NORMALIZE["std"]),
]
)
train_dataset = LightlyDataset(input_dir=str(train_dir), transform=train_transform)
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size_per_device,
shuffle=True,
num_workers=num_workers,
drop_last=True,
persistent_workers=False,
)
# Setup validation data.
val_transform = T.Compose(
[
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=IMAGENET_NORMALIZE["mean"], std=IMAGENET_NORMALIZE["std"]),
]
)
val_dataset = LightlyDataset(input_dir=str(val_dir), transform=val_transform)
val_dataloader = DataLoader(
val_dataset,
batch_size=batch_size_per_device,
shuffle=False,
num_workers=num_workers,
persistent_workers=False,
)
# Train linear classifier.
metric_callback = MetricCallback()
trainer = Trainer(
max_epochs=90,
accelerator=accelerator,
devices=devices,
callbacks=[
LearningRateMonitor(),
DeviceStatsMonitor(),
metric_callback,
],
logger=TensorBoardLogger(save_dir=str(log_dir), name="linear_eval"),
precision=precision,
strategy="ddp_find_unused_parameters_true",
num_sanity_val_steps=0,
)
classifier = LinearClassifier(
model=model,
batch_size_per_device=batch_size_per_device,
feature_dim=2048,
num_classes=num_classes,
freeze_model=True,
)
trainer.fit(
model=classifier,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
)
metrics_dict: Dict[str, float] = dict()
for metric in ["val_top1", "val_top5"]:
print(f"max linear {metric}: {max(metric_callback.val_metrics[metric])}")
metrics_dict[metric] = max(metric_callback.val_metrics[metric])
return metrics_dict