forked from izlotnik/schrodinger-dtbc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMAIN1D_PlotKernel.m
94 lines (94 loc) · 3.5 KB
/
MAIN1D_PlotKernel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
clearContext; format short; echo on; tic
%%
sExampleName = 'EX01'; % 'EX02m'; %
sDataDirectory = 'C:\MATLAB\R2011b'; % 'C:\Matlab\R2009b'; % 'D:\MATLAB\R2011b'; %
sBaseRunID = ''; % ''; % 'LAST'; % '20100205_170006_125'; %
[pTask pInitWave] = setTaskParams('Schrodinger', '1D', sExampleName, sDataDirectory, sBaseRunID);
%% FEM
nM = 3000; nM_max = 1000; % nM; %
nJ = 30;
NN = {1:6,[6 7],[6 8],[6 9]};
sT = 'FEM';
%% EX01 (FFDS) A
% nM = 300; nM_max = nM; %
% nJ = 240;
% NN = {[1/4 1/6 1/12 0]};
% sT = 'FFDS';
%% EX01 (FFDS) B
% nM = 3000; nM_max = 50; % nM;
% nJ = 1000; % 30; %
% NN = {[1/4 1/6 1/12 0]};
% sT = 'FFDS';
%%
if strcmp(sT, 'FFDS')
sMethod = {'TRISYS'};
else
sMethod = {'QR'};
end
K = NaN * ones(nM, length([NN{:}]));
N1 = 1;
for N=[NN{:}]
[pCalc pFile] = setCalcParams(pTask, {sT}, [N nJ nM NaN 0], sMethod);
[pVisual pCalc] = setVisualParams(pTask, pCalc, [0 0 0 0 0], [0 0 0 0], [1 1]);
pTask.V_inf = pTask.V_Rinf;
K1 = calcConvolutionKernel(pTask, pCalc);
K(:, N1)= K1(1:nM);
N1 = N1 + 1;
end
toc
nM_Default = nM; nM = min(nM, nM_max);
%%
p = plotInit;
N1 = 1;
for q=1:length(NN)
nNc = NN{q};
hf = figure('units', pVisual.pPlotKernel.sUnits, 'outerposition', pVisual.pPlotKernel.nOuterPosition);
sFileSuffix = '';
for N=1:length(nNc)%1:(N1-5)%
switch pCalc.name
case 'FEM'
sLegendTitle{N} = [ '$n=' num2str(nNc(N)) '$' ];
sFileSuffix = [ sFileSuffix num2str(nNc(N)) ',' ];
Nm = nNc(N);
case 'FFDS'
sLegendTitle{N} = [ '$\theta=' sym2str(sym(nNc(N))) '$' ];
sFileSuffix = [ sFileSuffix strrep(sym2str(sym(nNc(N))), '/', '-') ',' ];
switch nNc(N)
case 1/4, Nm = 17;
case 1/6, Nm = 1; % ~ n=1
case 1/12, Nm = 3; % ~ n=3
case 0, Nm = 12; % theta < 0
case -1/12, Nm = 13;
case -1/6, Nm = 14;
case -1/4, Nm = 15;
case -1/2, Nm = 16;
case 1/2, Nm = 18; % theta > 1/4
case 1, Nm = 19;
case 2, Nm = 20;
otherwise, Nm = nNc(N);
end
end
if Nm==17 % theta = 1/4
K(2:2:nM, N1) = K(1:2:nM, N1);
end
plot(1:nM, abs(K(1:nM, N1))...
,'LineWidth', pVisual.pPlotKernel.nLineWidth ...
,'LineStyle', p.line{ mod(Nm-1, length(p.line ))+1} ...
,'Color', p.color( mod(Nm-1, length(p.color ))+1, :));
set(gca, 'NextPlot', pVisual.pPlotKernel.sNextPlot);
N1 = N1 + 1;
end
legend(gca, sLegendTitle, 'Location', pVisual.pPlotKernel.sLegendLocation, 'Interpreter', 'LaTeX');
set(gca, 'YScale', 'log');
set(gca, 'FontSize', pVisual.pPlotKernel.nFontSize, 'FontWeight', pVisual.pPlotKernel.sFontWeight);
xlabel('$m$', 'Interpreter', 'LaTeX');
ylabel('$\left| K^{(n),m}_{\rm ref}\right|$', 'Interpreter', 'LaTeX');
switch pCalc.name
case 'FEM'
pVisual.pPlotKernel.sFileSuffix = [ 'N=' sFileSuffix(1:end-1) ];
case 'FFDS'
pVisual.pPlotKernel.sFileSuffix = [ 'PARAM=' sFileSuffix(1:end-1) ];
end
saveImage(hf, pVisual.pPlotKernel, [ 'M=' num2str(nM_Default) '_' 'J=' num2str(nJ) '_' 'MMAX=' num2str(nM_max) ], mfilename); % close(hf);
clear sLegendTitle;
end