forked from stanfordnmbl/opencap-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
621 lines (565 loc) · 31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
"""
@authors: Scott Uhlrich, Antoine Falisse, Łukasz Kidziński
This function calibrates the cameras, runs the pose detection algorithm,
reconstructs the 3D marker positions, augments the marker set,
and runs the OpenSim pipeline.
"""
import os
import glob
import numpy as np
import yaml
import traceback
import logging
logging.basicConfig(level=logging.INFO)
from utils import importMetadata, loadCameraParameters, getVideoExtension
from utils import getDataDirectory, getOpenPoseDirectory, getMMposeDirectory
from utilsChecker import saveCameraParameters
from utilsChecker import calcExtrinsicsFromVideo
from utilsChecker import isCheckerboardUpsideDown
from utilsChecker import autoSelectExtrinsicSolution
from utilsChecker import synchronizeVideos
from utilsChecker import triangulateMultiviewVideo
from utilsChecker import writeTRCfrom3DKeypoints
from utilsChecker import popNeutralPoseImages
from utilsChecker import rotateIntrinsics
from utilsDetector import runPoseDetector
from utilsAugmenter import augmentTRC
from utilsOpenSim import runScaleTool, getScaleTimeRange, runIKTool, generateVisualizerJson
def main(sessionName, trialName, trial_id, cameras_to_use=['all'],
intrinsicsFinalFolder='Deployed', isDocker=False,
extrinsicsTrial=False, alternateExtrinsics=None,
calibrationOptions=None,
markerDataFolderNameSuffix=None, imageUpsampleFactor=4,
poseDetector='OpenPose', resolutionPoseDetection='default',
scaleModel=False, bbox_thr=0.8, augmenter_model='v0.3',
genericFolderNames=False, offset=True, benchmark=False,
dataDir=None, overwriteAugmenterModel=False,
filter_frequency='default', overwriteFilterFrequency=False,
scaling_setup='upright_standing_pose', overwriteScalingSetup=False,
overwriteCamerasToUse=False):
# %% High-level settings.
# Camera calibration.
runCameraCalibration = True
# Pose detection.
runPoseDetection = True
# Video Synchronization.
runSynchronization = True
# Triangulation.
runTriangulation = True
# Marker augmentation.
runMarkerAugmentation = True
# OpenSim pipeline.
runOpenSimPipeline = True
# High-resolution for OpenPose.
resolutionPoseDetection = resolutionPoseDetection
# Set to False to only generate the json files (default is True).
# This speeds things up and saves storage space.
generateVideo = True
# This is a hack to handle a mismatch between the use of mmpose and hrnet,
# and between the use of OpenPose and openpose.
if poseDetector == 'hrnet':
poseDetector = 'mmpose'
elif poseDetector == 'openpose':
poseDetector = 'OpenPose'
if poseDetector == 'mmpose':
outputMediaFolder = 'OutputMedia_mmpose' + str(bbox_thr)
elif poseDetector == 'OpenPose':
outputMediaFolder = 'OutputMedia_' + resolutionPoseDetection
# %% Special case: extrinsics trial.
# For that trial, we only calibrate the cameras.
if extrinsicsTrial:
runCameraCalibration = True
runPoseDetection = False
runSynchronization = False
runTriangulation = False
runMarkerAugmentation = False
runOpenSimPipeline = False
# %% Paths and metadata. This gets defined through web app.
baseDir = os.path.dirname(os.path.abspath(__file__))
if dataDir is None:
dataDir = getDataDirectory(isDocker)
if 'dataDir' not in locals():
sessionDir = os.path.join(baseDir, 'Data', sessionName)
else:
sessionDir = os.path.join(dataDir, 'Data', sessionName)
sessionMetadata = importMetadata(os.path.join(sessionDir,
'sessionMetadata.yaml'))
# If augmenter model defined through web app.
# If overwriteAugmenterModel is True, the augmenter model is the one
# passed as an argument to main(). This is useful for local testing.
if 'augmentermodel' in sessionMetadata and not overwriteAugmenterModel:
augmenterModel = sessionMetadata['augmentermodel']
else:
augmenterModel = augmenter_model
# Lowpass filter frequency of 2D keypoints for gait and everything else.
# If overwriteFilterFrequency is True, the filter frequency is the one
# passed as an argument to main(). This is useful for local testing.
if 'filterfrequency' in sessionMetadata and not overwriteFilterFrequency:
filterfrequency = sessionMetadata['filterfrequency']
else:
filterfrequency = filter_frequency
if filterfrequency == 'default':
filtFreqs = {'gait':12, 'default':500} # defaults to framerate/2
else:
filtFreqs = {'gait':filterfrequency, 'default':filterfrequency}
# If scaling setup defined through web app.
# If overwriteScalingSetup is True, the scaling setup is the one
# passed as an argument to main(). This is useful for local testing.
if 'scalingsetup' in sessionMetadata and not overwriteScalingSetup:
scalingSetup = sessionMetadata['scalingsetup']
else:
scalingSetup = scaling_setup
# If camerastouse is in sessionMetadata, reprocess with specified cameras.
# This allows reprocessing trials with missing videos. If
# overwriteCamerasToUse is True, the camera selection is the one
# passed as an argument to main(). This is useful for local testing.
if 'camerastouse' in sessionMetadata and not overwriteCamerasToUse:
camerasToUse = sessionMetadata['camerastouse']
else:
camerasToUse = cameras_to_use
# %% Paths to pose detector folder for local testing.
if poseDetector == 'OpenPose':
poseDetectorDirectory = getOpenPoseDirectory(isDocker)
elif poseDetector == 'mmpose':
poseDetectorDirectory = getMMposeDirectory(isDocker)
# %% Create marker folders
# Create output folder.
if genericFolderNames:
markerDataFolderName = os.path.join('MarkerData')
else:
if poseDetector == 'mmpose':
suff_pd = '_' + str(bbox_thr)
elif poseDetector == 'OpenPose':
suff_pd = '_' + resolutionPoseDetection
markerDataFolderName = os.path.join('MarkerData',
poseDetector + suff_pd)
if not markerDataFolderNameSuffix is None:
markerDataFolderName = os.path.join(markerDataFolderName,
markerDataFolderNameSuffix)
preAugmentationDir = os.path.join(sessionDir, markerDataFolderName,
'PreAugmentation')
os.makedirs(preAugmentationDir, exist_ok=True)
# Create augmented marker folders as well
if genericFolderNames:
postAugmentationDir = os.path.join(sessionDir, markerDataFolderName,
'PostAugmentation')
else:
postAugmentationDir = os.path.join(
sessionDir, markerDataFolderName,
'PostAugmentation_{}'.format(augmenterModel))
os.makedirs(postAugmentationDir, exist_ok=True)
# %% Dump settings in yaml.
if not extrinsicsTrial:
pathSettings = os.path.join(postAugmentationDir,
'Settings_' + trial_id + '.yaml')
settings = {
'poseDetector': poseDetector,
'augmenter_model': augmenterModel,
'imageUpsampleFactor': imageUpsampleFactor,
'openSimModel': sessionMetadata['openSimModel'],
'scalingSetup': scalingSetup,
'filterFrequency': filterfrequency,
}
if poseDetector == 'OpenPose':
settings['resolutionPoseDetection'] = resolutionPoseDetection
elif poseDetector == 'mmpose':
settings['bbox_thr'] = bbox_thr
with open(pathSettings, 'w') as file:
yaml.dump(settings, file)
# %% Camera calibration.
if runCameraCalibration:
# Get checkerboard parameters from metadata.
CheckerBoardParams = {
'dimensions': (
sessionMetadata['checkerBoard']['black2BlackCornersWidth_n'],
sessionMetadata['checkerBoard']['black2BlackCornersHeight_n']),
'squareSize':
sessionMetadata['checkerBoard']['squareSideLength_mm']}
# Camera directories and models.
cameraDirectories = {}
cameraModels = {}
for pathCam in glob.glob(os.path.join(sessionDir, 'Videos', 'Cam*')):
if os.name == 'nt': # windows
camName = pathCam.split('\\')[-1]
elif os.name == 'posix': # ubuntu
camName = pathCam.split('/')[-1]
cameraDirectories[camName] = os.path.join(sessionDir, 'Videos',
pathCam)
cameraModels[camName] = sessionMetadata['iphoneModel'][camName]
# Get cameras' intrinsics and extrinsics.
# Load parameters if saved, compute and save them if not.
CamParamDict = {}
loadedCamParams = {}
for camName in cameraDirectories:
camDir = cameraDirectories[camName]
# Intrinsics ######################################################
# Intrinsics and extrinsics already exist for this session.
if os.path.exists(
os.path.join(camDir,"cameraIntrinsicsExtrinsics.pickle")):
logging.info("Load extrinsics for {} - already existing".format(
camName))
CamParams = loadCameraParameters(
os.path.join(camDir, "cameraIntrinsicsExtrinsics.pickle"))
loadedCamParams[camName] = True
# Extrinsics do not exist for this session.
else:
logging.info("Compute extrinsics for {} - not yet existing".format(camName))
# Intrinsics ##################################################
# Intrinsics directories.
intrinsicDir = os.path.join(baseDir, 'CameraIntrinsics',
cameraModels[camName])
permIntrinsicDir = os.path.join(intrinsicDir,
intrinsicsFinalFolder)
# Intrinsics exist.
if os.path.exists(permIntrinsicDir):
CamParams = loadCameraParameters(
os.path.join(permIntrinsicDir,
'cameraIntrinsics.pickle'))
# Intrinsics do not exist throw an error. Eventually the
# webapp will give you the opportunity to compute them.
else:
exception = "Intrinsics don't exist for your camera model. OpenCap supports all iOS devices released in 2018 or later: https://www.opencap.ai/get-started."
raise Exception(exception, exception)
# Extrinsics ##################################################
# Compute extrinsics from images popped out of this trial.
# Hopefully you get a clean shot of the checkerboard in at
# least one frame of each camera.
useSecondExtrinsicsSolution = (
alternateExtrinsics is not None and
camName in alternateExtrinsics)
pathVideoWithoutExtension = os.path.join(
camDir, 'InputMedia', trialName, trial_id)
extension = getVideoExtension(pathVideoWithoutExtension)
extrinsicPath = os.path.join(camDir, 'InputMedia', trialName,
trial_id + extension)
# Modify intrinsics if camera view is rotated
CamParams = rotateIntrinsics(CamParams,extrinsicPath)
# for 720p, imageUpsampleFactor=4 is best for small board
try:
CamParams = calcExtrinsicsFromVideo(
extrinsicPath,CamParams, CheckerBoardParams,
visualize=False, imageUpsampleFactor=imageUpsampleFactor,
useSecondExtrinsicsSolution = useSecondExtrinsicsSolution)
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Camera calibration failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about camera calibration and https://www.opencap.ai/troubleshooting for potential causes for a failed calibration."
raise Exception(exception, traceback.format_exc())
loadedCamParams[camName] = False
# Append camera parameters.
if CamParams is not None:
CamParamDict[camName] = CamParams.copy()
else:
CamParamDict[camName] = None
# Save parameters if not existing yet.
if not all([loadedCamParams[i] for i in loadedCamParams]):
for camName in CamParamDict:
saveCameraParameters(
os.path.join(cameraDirectories[camName],
"cameraIntrinsicsExtrinsics.pickle"),
CamParamDict[camName])
# %% 3D reconstruction
# Set output file name.
pathOutputFiles = {}
if benchmark:
pathOutputFiles[trialName] = os.path.join(preAugmentationDir,
trialName + ".trc")
else:
pathOutputFiles[trialName] = os.path.join(preAugmentationDir,
trial_id + ".trc")
# Trial relative path
trialRelativePath = os.path.join('InputMedia', trialName, trial_id)
if runPoseDetection:
# Detect if checkerboard is upside down.
upsideDownChecker = isCheckerboardUpsideDown(CamParamDict)
# Get rotation angles from motion capture environment to OpenSim.
# Space-fixed are lowercase, Body-fixed are uppercase.
checkerBoardMount = sessionMetadata['checkerBoard']['placement']
if checkerBoardMount == 'backWall' and not upsideDownChecker:
rotationAngles = {'y':90, 'z':180}
elif checkerBoardMount == 'backWall' and upsideDownChecker:
rotationAngles = {'y':-90}
elif checkerBoardMount == 'backWall_largeCB':
rotationAngles = {'y':-90}
# TODO: uppercase?
elif checkerBoardMount == 'backWall_walking':
rotationAngles = {'YZ':(-90,180)}
elif checkerBoardMount == 'ground':
rotationAngles = {'x':-90, 'y':90}
elif checkerBoardMount == 'ground_jumps': # for sub1
rotationAngles = {'x':90, 'y':180}
elif checkerBoardMount == 'ground_gaits': # for sub1
rotationAngles = {'x':90, 'y':90}
else:
raise Exception('checkerBoard placement value in\
sessionMetadata.yaml is not currently supported')
# Detect all available cameras (ie, cameras with existing videos).
cameras_available = []
for camName in cameraDirectories:
camDir = cameraDirectories[camName]
pathVideoWithoutExtension = os.path.join(camDir, 'InputMedia', trialName, trial_id)
if len(glob.glob(pathVideoWithoutExtension + '*')) == 0:
print(f"Camera {camName} does not have a video for trial {trial_id}")
else:
if os.path.exists(os.path.join(pathVideoWithoutExtension + getVideoExtension(pathVideoWithoutExtension))):
cameras_available.append(camName)
else:
print(f"Camera {camName} does not have a video for trial {trial_id}")
if camerasToUse[0] == 'all':
cameras_all = list(cameraDirectories.keys())
if not all([cam in cameras_available for cam in cameras_all]):
exception = 'Not all cameras have uploaded videos; one or more cameras might have turned off or lost connection'
raise Exception(exception, exception)
else:
camerasToUse_c = camerasToUse
elif camerasToUse[0] == 'all_available':
camerasToUse_c = cameras_available
print(f"Using available cameras: {camerasToUse_c}")
else:
if not all([cam in cameras_available for cam in camerasToUse]):
raise Exception('Not all specified cameras in camerasToUse have videos; verify the camera names or consider setting camerasToUse to ["all_available"]')
else:
camerasToUse_c = camerasToUse
print(f"Using cameras: {camerasToUse_c}")
settings['camerasToUse'] = camerasToUse_c
if camerasToUse_c[0] != 'all' and len(camerasToUse_c) < 2:
exception = 'At least two videos are required for 3D reconstruction, video upload likely failed for one or more cameras.'
raise Exception(exception, exception)
# For neutral, we do not allow reprocessing with not all cameras.
# The reason is that it affects extrinsics selection, and then you can only process
# dynamic trials with the same camera selection (ie, potentially not all cameras).
# This might be addressable, but I (Antoine) do not see an immediate need + this
# would be a significant change in the code base. In practice, a data collection
# will not go through neutral if not all cameras are available.
if scaleModel:
if camerasToUse_c[0] != 'all' and len(camerasToUse_c) < len(cameraDirectories):
exception = 'All cameras are required for calibration and neutral pose.'
raise Exception(exception, exception)
# Run pose detection algorithm.
try:
videoExtension = runPoseDetector(
cameraDirectories, trialRelativePath, poseDetectorDirectory,
trialName, CamParamDict=CamParamDict,
resolutionPoseDetection=resolutionPoseDetection,
generateVideo=generateVideo, cams2Use=camerasToUse_c,
poseDetector=poseDetector, bbox_thr=bbox_thr)
trialRelativePath += videoExtension
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = """Pose detection failed. Verify your setup and try again.
Visit https://www.opencap.ai/best-pratices to learn more about data collection
and https://www.opencap.ai/troubleshooting for potential causes for a failed trial."""
raise Exception(exception, traceback.format_exc())
if runSynchronization:
# Synchronize videos.
try:
keypoints2D, confidence, keypointNames, frameRate, nansInOut, startEndFrames, cameras2Use = (
synchronizeVideos(
cameraDirectories, trialRelativePath, poseDetectorDirectory,
undistortPoints=True, CamParamDict=CamParamDict,
filtFreqs=filtFreqs, confidenceThreshold=0.4,
imageBasedTracker=False, cams2Use=camerasToUse_c,
poseDetector=poseDetector, trialName=trialName,
resolutionPoseDetection=resolutionPoseDetection))
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = """Video synchronization failed. Verify your setup and try again.
A fail-safe synchronization method is for the participant to
quickly raise one hand above their shoulders, then bring it back down.
Visit https://www.opencap.ai/best-pratices to learn more about
data collection and https://www.opencap.ai/troubleshooting for
potential causes for a failed trial."""
raise Exception(exception, traceback.format_exc())
# Note: this should not be necessary, because we prevent reprocessing the neutral trial
# with not all cameras, but keeping it in there in case we would want to.
if calibrationOptions is not None:
allCams = list(calibrationOptions.keys())
for cam_t in allCams:
if not cam_t in cameras2Use:
calibrationOptions.pop(cam_t)
if scaleModel and calibrationOptions is not None and alternateExtrinsics is None:
# Automatically select the camera calibration to use
CamParamDict = autoSelectExtrinsicSolution(sessionDir,keypoints2D,confidence,calibrationOptions)
if runTriangulation:
# Triangulate.
try:
keypoints3D, confidence3D = triangulateMultiviewVideo(
CamParamDict, keypoints2D, ignoreMissingMarkers=False,
cams2Use=cameras2Use, confidenceDict=confidence,
spline3dZeros = True, splineMaxFrames=int(frameRate/5),
nansInOut=nansInOut,CameraDirectories=cameraDirectories,
trialName=trialName,startEndFrames=startEndFrames,trialID=trial_id,
outputMediaFolder=outputMediaFolder)
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Triangulation failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about data collection and https://www.opencap.ai/troubleshooting for potential causes for a failed trial."
raise Exception(exception, traceback.format_exc())
# Throw an error if not enough data
if keypoints3D.shape[2] < 10:
e1 = 'Error - less than 10 good frames of triangulated data.'
raise Exception(e1,e1)
# Write TRC.
writeTRCfrom3DKeypoints(keypoints3D, pathOutputFiles[trialName],
keypointNames, frameRate=frameRate,
rotationAngles=rotationAngles)
# %% Augmentation.
# Get augmenter model.
augmenterModelName = (
sessionMetadata['markerAugmentationSettings']['markerAugmenterModel'])
# Set output file name.
pathAugmentedOutputFiles = {}
if genericFolderNames:
pathAugmentedOutputFiles[trialName] = os.path.join(
postAugmentationDir, trial_id + ".trc")
else:
if benchmark:
pathAugmentedOutputFiles[trialName] = os.path.join(
postAugmentationDir, trialName + "_" + augmenterModelName +".trc")
else:
pathAugmentedOutputFiles[trialName] = os.path.join(
postAugmentationDir, trial_id + "_" + augmenterModelName +".trc")
if runMarkerAugmentation:
os.makedirs(postAugmentationDir, exist_ok=True)
augmenterDir = os.path.join(baseDir, "MarkerAugmenter")
logging.info('Augmenting marker set')
try:
vertical_offset = augmentTRC(
pathOutputFiles[trialName],sessionMetadata['mass_kg'],
sessionMetadata['height_m'], pathAugmentedOutputFiles[trialName],
augmenterDir, augmenterModelName=augmenterModelName,
augmenter_model=augmenterModel, offset=offset)
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Marker augmentation failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about data collection and https://www.opencap.ai/troubleshooting for potential causes for a failed trial."
raise Exception(exception, traceback.format_exc())
if offset:
# If offset, no need to offset again for the webapp visualization.
# (0.01 so that there is no overall offset, see utilsOpenSim).
vertical_offset_settings = float(np.copy(vertical_offset)-0.01)
vertical_offset = 0.01
# %% OpenSim pipeline.
if runOpenSimPipeline:
openSimPipelineDir = os.path.join(baseDir, "opensimPipeline")
if genericFolderNames:
openSimFolderName = 'OpenSimData'
else:
openSimFolderName = os.path.join('OpenSimData',
poseDetector + suff_pd)
if not markerDataFolderNameSuffix is None:
openSimFolderName = os.path.join(openSimFolderName,
markerDataFolderNameSuffix)
openSimDir = os.path.join(sessionDir, openSimFolderName)
outputScaledModelDir = os.path.join(openSimDir, 'Model')
# Check if shoulder model.
if 'shoulder' in sessionMetadata['openSimModel']:
suffix_model = '_shoulder'
else:
suffix_model = ''
# Scaling.
if scaleModel:
os.makedirs(outputScaledModelDir, exist_ok=True)
# Path setup file.
if scalingSetup == 'any_pose':
genericSetupFile4ScalingName = 'Setup_scaling_LaiUhlrich2022_any_pose.xml'
else: # by default, use upright_standing_pose
genericSetupFile4ScalingName = 'Setup_scaling_LaiUhlrich2022.xml'
pathGenericSetupFile4Scaling = os.path.join(
openSimPipelineDir, 'Scaling', genericSetupFile4ScalingName)
# Path model file.
pathGenericModel4Scaling = os.path.join(
openSimPipelineDir, 'Models',
sessionMetadata['openSimModel'] + '.osim')
# Path TRC file.
pathTRCFile4Scaling = pathAugmentedOutputFiles[trialName]
# Get time range.
try:
thresholdPosition = 0.003
maxThreshold = 0.015
increment = 0.001
success = False
while thresholdPosition <= maxThreshold and not success:
try:
timeRange4Scaling = getScaleTimeRange(
pathTRCFile4Scaling,
thresholdPosition=thresholdPosition,
thresholdTime=0.1, removeRoot=True)
success = True
except Exception as e:
logging.info(f"Attempt identifying scaling time range with thresholdPosition {thresholdPosition} failed: {e}")
thresholdPosition += increment # Increase the threshold for the next iteration
# Run scale tool.
logging.info('Running Scaling')
pathScaledModel = runScaleTool(
pathGenericSetupFile4Scaling, pathGenericModel4Scaling,
sessionMetadata['mass_kg'], pathTRCFile4Scaling,
timeRange4Scaling, outputScaledModelDir,
subjectHeight=sessionMetadata['height_m'],
suffix_model=suffix_model)
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Musculoskeletal model scaling failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about data collection and https://www.opencap.ai/troubleshooting for potential causes for a failed neutral pose."
raise Exception(exception, traceback.format_exc())
# Extract one frame from videos to verify neutral pose.
staticImagesFolderDir = os.path.join(sessionDir,
'NeutralPoseImages')
os.makedirs(staticImagesFolderDir, exist_ok=True)
popNeutralPoseImages(cameraDirectories, cameras2Use,
timeRange4Scaling[0], staticImagesFolderDir,
trial_id, writeVideo = True)
pathOutputIK = pathScaledModel[:-5] + '.mot'
pathModelIK = pathScaledModel
# Inverse kinematics.
if not scaleModel:
outputIKDir = os.path.join(openSimDir, 'Kinematics')
os.makedirs(outputIKDir, exist_ok=True)
# Check if there is a scaled model.
pathScaledModel = os.path.join(outputScaledModelDir,
sessionMetadata['openSimModel'] +
"_scaled.osim")
if os.path.exists(pathScaledModel):
# Path setup file.
genericSetupFile4IKName = 'Setup_IK{}.xml'.format(suffix_model)
pathGenericSetupFile4IK = os.path.join(
openSimPipelineDir, 'IK', genericSetupFile4IKName)
# Path TRC file.
pathTRCFile4IK = pathAugmentedOutputFiles[trialName]
# Run IK tool.
logging.info('Running Inverse Kinematics')
try:
pathOutputIK, pathModelIK = runIKTool(
pathGenericSetupFile4IK, pathScaledModel,
pathTRCFile4IK, outputIKDir)
except Exception as e:
if len(e.args) == 2: # specific exception
raise Exception(e.args[0], e.args[1])
elif len(e.args) == 1: # generic exception
exception = "Inverse kinematics failed. Verify your setup and try again. Visit https://www.opencap.ai/best-pratices to learn more about data collection and https://www.opencap.ai/troubleshooting for potential causes for a failed trial."
raise Exception(exception, traceback.format_exc())
else:
raise ValueError("No scaled model available.")
# Write body transforms to json for visualization.
outputJsonVisDir = os.path.join(sessionDir,'VisualizerJsons',
trialName)
os.makedirs(outputJsonVisDir,exist_ok=True)
outputJsonVisPath = os.path.join(outputJsonVisDir,
trialName + '.json')
generateVisualizerJson(pathModelIK, pathOutputIK,
outputJsonVisPath,
vertical_offset=vertical_offset)
# %% Rewrite settings, adding offset
if not extrinsicsTrial:
if offset:
settings['verticalOffset'] = vertical_offset_settings
with open(pathSettings, 'w') as file:
yaml.dump(settings, file)