forked from stanfordnmbl/opencap-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsCameraPy3.py
923 lines (847 loc) · 37.6 KB
/
utilsCameraPy3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# This is copied from camera.py, updated for python 3
# https://github.com/smidm/camera.py/blob/master/camera.py
import numpy as np
import math
import yaml
from scipy.special import cbrt
from scipy.interpolate import griddata
from scipy.optimize import minimize_scalar
from warnings import warn
try:
import cv2
except ImportError:
warn('OpenCV not found, OpenCV camera model will be not available.')
# Bibliography:
# [1] Sara R. Matousek M. 3D Computer Vision. January 7, 2014.
# Online: http://cmp.felk.cvut.cz/cmp/courses/TDV/2013W/lectures/tdv-2013-all.pdf
def p2e(projective):
"""
Convert 2d or 3d projective to euclidean coordinates.
:param projective: projective coordinate(s)
:type projective: numpy.ndarray, shape=(3 or 4, n)
:return: euclidean coordinate(s)
:rtype: numpy.ndarray, shape=(2 or 3, n)
"""
assert(type(projective) == np.ndarray)
assert((projective.shape[0] == 4) | (projective.shape[0] == 3))
return (projective / projective[-1, :])[0:-1, :]
def e2p(euclidean):
"""
Convert 2d or 3d euclidean to projective coordinates.
:param euclidean: projective coordinate(s)
:type euclidean: numpy.ndarray, shape=(2 or 3, n)
:return: projective coordinate(s)
:rtype: numpy.ndarray, shape=(3 or 4, n)
"""
assert(type(euclidean) == np.ndarray)
assert((euclidean.shape[0] == 3) | (euclidean.shape[0] == 2))
return np.vstack((euclidean, np.ones((1, euclidean.shape[1]))))
def column(vector):
"""
Return column vector.
:param vector: np.ndarray
:return: column vector
:rtype: np.ndarray, shape=(n, 1)
"""
return vector.reshape((-1, 1))
# line routines, slope-intercept form y = m * x + c
def fit_line(xy):
"""
Fit line to points.
:param xy: point coordinates
:type xy: np.ndarray, shape=(2, n)
:return: line parameters [m, c]
:rtype mc: array like
"""
assert xy.shape[0] == 2
x = column(xy[0, :])
y = column(xy[1, :])
a = np.hstack((x, np.ones((xy.shape[1], 1))))
return np.linalg.lstsq(a, y)[0]
def line_point_distance(xy, mc):
"""
Distance from point(s) to line.
:param xy: point coordinates
:type xy: np.ndarray, shape=(2, n)
:param mc: line parameters [m, c]
:type mc: array like
:return: distance(s)
:rtype: np.ndarray, shape=(n,)
"""
m = mc[0] # slope
c = mc[1] # intercept
return (xy[0, :] * m - xy[1, :] + c) / (m ** 2 + 1)
def nearest_point_on_line(xy, mc):
"""
Nearest point(s) to line.
:param xy: point coordinates
:type xy: np.ndarray, shape=(2, n)
:param mc: line parameters [m, c]
:type mc: array like
:return: point(s) on line
:rtype: np.ndarray, shape=(2, n)
"""
m = mc[0] # slope
c = mc[1] # intercept
x = (xy[0, :] + xy[1, :] * m - c * m) / (m ** 2 + 1)
y = m * x + c
return np.array([x, y])
class Camera:
"""
Projective camera model
- camera intrinsic and extrinsic parameters handling
- various lens distortion models
- model persistence
- projection of camera coordinates to an image
- conversion of image coordinates on a plane to camera coordinates
- visibility handling
"""
def __init__(self, id=None):
"""
:param id: camera identification number
:type id: unknown or int
"""
self.K = np.eye(3) # camera intrinsic parameters
self.Kundistortion = np.array([]) # could be altered based on K using set_undistorted_view(alpha)
# to get undistorted image with all / corner pixels visible
self.R = np.eye(3)
self.t = np.zeros((3, 1))
self.kappa = np.zeros((2,))
self.id = id
self.size_px = np.zeros((2,))
# self.size_px_view = np.zeros((2,)) #
self.bouguet_kc = np.zeros((5,))
self.kannala_p = np.zeros((6,))
self.kannala_thetamax = None
self.division_lambda = 0.
self.division_z_n = -1
self.tsai_f = -1
self.tsai_kappa = -1
self.tsai_ncx = -1
self.tsai_nfx = -1
self.tsai_dx = -1
self.tsai_dy = -1
self.opencv_dist_coeff = None
self.calibration_type = 'standard' # other possible values: bouguet, kannala, division, opencv
self.update_P()
def save(self, filename):
"""
Save camera model to a YAML file.
"""
data = {'id': self.id,
'K': self.K.tolist(),
'R': self.R.tolist(),
't': self.t.tolist(),
'size_px': self.size_px.tolist(),
'calibration_type': self.calibration_type
}
if self.Kundistortion.size != 0:
data['Kundistortion'] = self.Kundistortion.tolist()
if self.calibration_type == 'bouguet':
data['bouguet_kc'] = self.bouguet_kc.tolist()
elif self.calibration_type == 'kannala':
data['kannala_p'] = self.kannala_p.tolist()
data['kannala_thetamax'] = self.kannala_thetamax
elif self.calibration_type == 'tsai':
data_tsai = {'tsai_f': self.tsai_f,
'tsai_kappa': self.tsai_kappa,
'tsai_nfx': self.tsai_nfx,
'tsai_dx': self.tsai_dx,
'tsai_dy': self.tsai_dy,
'tsai_ncx': self.tsai_ncx,
}
data.update(data_tsai)
elif self.calibration_type == 'division':
data['division_lambda'] = self.division_lambda
data['division_z_n'] = self.division_z_n
elif self.calibration_type == 'opencv' or self.calibration_type == 'opencv_fisheye':
data['opencv_dist_coeff'] = self.opencv_dist_coeff.tolist()
else:
data['kappa'] = self.kappa.tolist()
yaml.dump(data, open(filename, 'w'))
def load(self, filename):
"""
Load camera model from a YAML file.
Example::
calibration_type: standard
K:
- [1225.2, -7.502186291576686e-14, 480.0]
- [0.0, 1225.2, 384.0]
- [0.0, 0.0, 1.0]
R:
- [-0.9316877145365, -0.3608289515885, 0.002545329627547]
- [-0.1725273110187, 0.4247524018287, -0.8888909933995]
- [0.3296724908378, -0.8263880720441, -0.4579894432589]
id: 0
kappa: [0.0, 0.0]
size_px: [960, 768]
t:
- [-1.365061486465]
- [3.431608806127]
- [17.74182159488]
"""
data = yaml.load(open(filename))
if 'id' in data:
self.id = data['id']
if 'K' in data:
self.K = np.array(data['K']).reshape((3, 3))
if 'R' in data:
self.R = np.array(data['R']).reshape((3, 3))
if 't' in data:
self.t = np.array(data['t']).reshape((3, 1))
if 'size_px' in data:
self.size_px = np.array(data['size_px']).reshape((2,))
if 'calibration_type' in data:
self.calibration_type = data['calibration_type']
if 'Kundistortion' in data:
self.Kundistortion = np.array(data['Kundistortion'])
else:
self.Kundistortion = self.K
if self.calibration_type == 'bouguet':
self.bouguet_kc = np.array(data['bouguet_kc']).reshape((5,))
elif self.calibration_type == 'kannala':
self.kannala_p = np.array(data['kannala_p']).reshape((6,))
self.kannala_thetamax = data['kannala_thetamax'] # not used now
# Focal length actually used is from kannala_p. Why then K is stored? Works for me like this.
self.K[0, 0] = self.kannala_p[2]
self.K[1, 1] = self.kannala_p[3]
# principal point in K and kannala_p[4:] should be consistent
assert self.K[0, 2] == self.kannala_p[4]
assert self.K[1, 2] == self.kannala_p[5]
elif self.calibration_type == 'tsai':
self.tsai_f = data['tsai_f']
self.tsai_kappa = data['tsai_kappa']
self.tsai_ncx = data['tsai_ncx']
self.tsai_nfx = data['tsai_nfx']
self.tsai_dx = data['tsai_dx']
self.tsai_dy = data['tsai_dy']
elif self.calibration_type == 'division':
self.division_lambda = data['division_lambda']
self.division_z_n = data['division_z_n']
elif self.calibration_type == 'opencv' or self.calibration_type == 'opencv_fisheye':
self.opencv_dist_coeff = np.array(data['opencv_dist_coeff'])
elif self.calibration_type == 'standard':
self.kappa = np.array(data['kappa']).reshape((2,))
if 'id' not in data and \
'K' not in data and \
'R' not in data and \
't' not in data and \
'size_px' not in data and \
'calibration_type' not in data and \
'Kundistortion' not in data:
warn('Nothing loaded from %s, check the contents.' % filename)
self.update_P()
def update_P(self):
"""
Update camera P matrix from K, R and t.
"""
self.P = self.K.dot(np.hstack((self.R, self.t)))
def set_K(self, K):
"""
Set K and update P.
:param K: intrinsic camera parameters
:type K: numpy.ndarray, shape=(3, 3)
"""
self.K = K
self.update_P()
def set_K_elements(self, u0_px, v0_px, f=1, theta_rad=math.pi/2, a=1):
"""
Update pinhole camera intrinsic parameters and updates P matrix.
:param u0_px: principal point x position (pixels)
:type u0_px: double
:param v0_px: principal point y position (pixels)
:type v0_px: double
:param f: focal length
:type f: double
:param theta_rad: digitization raster skew (radians)
:type theta_rad: double
:param a: pixel aspect ratio
:type a: double
"""
self.K = np.array([[f, -f * 1 / math.tan(theta_rad), u0_px],
[0, f / (a * math.sin(theta_rad)), v0_px],
[0, 0, 1]])
self.update_P()
def set_R(self, R):
"""
Set camera extrinsic parameters and updates P.
:param R: camera extrinsic parameters matrix
:type R: numpy.ndarray, shape=(3, 3)
"""
self.R = R
self.update_P()
def set_R_euler_angles(self, angles):
"""
Set rotation matrix according to euler angles and updates P.
:param angles: 3 euler angles in radians,
:type angles: double sequence, len=3
"""
rx = angles[0]
ry = angles[1]
rz = angles[2]
from numpy import sin
from numpy import cos
self.R = np.array([[cos(ry) * cos(rz),
cos(rz) * sin(rx) * sin(ry) - cos(rx) * sin(rz),
sin(rx) * sin(rz) + cos(rx) * cos(rz) * sin(ry)],
[cos(ry) * sin(rz),
sin(rx) * sin(ry) * sin(rz) + cos(rx) * cos(rz),
cos(rx) * sin(ry) * sin(rz) - cos(rz) * sin(rx)],
[-sin(ry),
cos(ry) * sin(rx),
cos(rx) * cos(ry)]
])
self.update_P()
def set_t(self, t):
"""
Set camera translation and updates P.
:param t: camera translation vector
:type t: numpy.ndarray, shape=(3, 1)
"""
self.t = t
self.update_P()
def get_K_0(self):
"""
Return ideal calibration matrix (only focal length present).
:return: ideal calibration matrix
:rtype: np.ndarray, shape=(3, 3)
"""
K_0 = np.eye(3)
K_0[0, 0] = self.get_focal_length()
K_0[1, 1] = self.get_focal_length()
return K_0
def get_A(self, K=None):
"""
Return part of K matrix that applies center, skew and aspect ratio to ideal image coordinates.
:rtype: np.ndarray, shape=(3, 3)
"""
if K is None:
K = self.K
A = K.copy()
A[0, 0] /= self.get_focal_length()
A[0, 1] /= self.get_focal_length()
A[1, 1] /= self.get_focal_length()
return A
def get_z0_homography(self, K=None):
"""
Return homography from world plane at z = 0 to image plane.
:return: 2d plane homography
:rtype: np.ndarray, shape=(3, 3)
"""
if K is None:
K = self.K
return K.dot(np.hstack((self.R, self.t)))[:, [0, 1, 3]]
def undistort_image(self, img, Kundistortion=None):
"""
Transform grayscale image such that radial distortion is removed.
:param img: input image
:type img: np.ndarray, shape=(n, m) or (n, m, 3)
:param Kundistortion: camera matrix for undistorted view, None for self.K
:type Kundistortion: array-like, shape=(3, 3)
:return: transformed image
:rtype: np.ndarray, shape=(n, m) or (n, m, 3)
"""
if Kundistortion is None:
Kundistortion = self.K
if self.calibration_type == 'opencv':
return cv2.undistort(img, self.K, self.opencv_dist_coeff, newCameraMatrix=Kundistortion)
elif self.calibration_type == 'opencv_fisheye':
return cv2.fisheye.undistortImage(img, self.K, self.opencv_dist_coeff, Knew=Kundistortion)
else:
xx, yy = np.meshgrid(np.arange(img.shape[1]), np.arange(img.shape[0]))
img_coords = np.array([xx.ravel(), yy.ravel()])
y_l = self.undistort(img_coords, Kundistortion)
if img.ndim == 2:
return griddata(y_l.T, img.ravel(), (xx, yy), fill_value=0, method='linear')
else:
channels = [griddata(y_l.T, img[:, :, i].ravel(), (xx, yy), fill_value=0, method='linear')
for i in range(img.shape[2])]
return np.dstack(channels)
def undistort(self, distorted_image_coords, Kundistortion=None):
"""
Remove distortion from image coordinates.
:param distorted_image_coords: real image coordinates
:type distorted_image_coords: numpy.ndarray, shape=(2, n)
:param Kundistortion: camera matrix for undistorted view, None for self.K
:type Kundistortion: array-like, shape=(3, 3)
:return: linear image coordinates
:rtype: numpy.ndarray, shape=(2, n)
"""
assert distorted_image_coords.shape[0] == 2
assert distorted_image_coords.ndim == 2
if Kundistortion is None:
Kundistortion = self.K
if self.calibration_type == 'division':
A = self.get_A(Kundistortion)
Ainv = np.linalg.inv(A)
undistorted_image_coords = p2e(A.dot(e2p(self._undistort_division(p2e(Ainv.dot(e2p(distorted_image_coords)))))))
elif self.calibration_type == 'opencv':
undistorted_image_coords = cv2.undistortPoints(distorted_image_coords.T.reshape((1, -1, 2)),
self.K, self.opencv_dist_coeff,
P=Kundistortion).reshape(-1, 2).T
elif self.calibration_type == 'opencv_fisheye':
undistorted_image_coords = cv2.fisheye.undistortPoints(distorted_image_coords.T.reshape((1, -1, 2)),
self.K, self.opencv_dist_coeff,
P=Kundistortion).reshape(-1, 2).T
else:
warn('undistortion not implemented')
undistorted_image_coords = distorted_image_coords
assert undistorted_image_coords.shape[0] == 2
assert undistorted_image_coords.ndim == 2
return undistorted_image_coords
def distort(self, undistorted_image_coords, Kundistortion=None):
"""
Apply distortion to ideal image coordinates.
:param undistorted_image_coords: ideal image coordinates
:type undistorted_image_coords: numpy.ndarray, shape=(2, n)
:param Kundistortion: camera matrix for undistorted coordinates, None for self.K
:type Kundistortion: array-like, shape=(3, 3)
:return: distorted image coordinates
:rtype: numpy.ndarray, shape=(2, n)
"""
assert undistorted_image_coords.shape[0] == 2
assert undistorted_image_coords.ndim == 2
if Kundistortion is None:
Kundistortion = self.K
if self.calibration_type == 'division':
A = self.get_A(Kundistortion)
Ainv = np.linalg.inv(A)
distorted_image_coords = p2e(A.dot(e2p(self._distort_division(p2e(Ainv.dot(e2p(undistorted_image_coords)))))))
elif self.calibration_type == 'opencv':
undistorted_image_coords_norm = (undistorted_image_coords - column(Kundistortion[0:2, 2])) / \
column(Kundistortion.diagonal()[0:2])
undistorted_image_coords_3d = np.vstack((undistorted_image_coords_norm,
np.zeros((1, undistorted_image_coords.shape[1]))))
distorted_image_coords, _ = cv2.projectPoints(undistorted_image_coords_3d.T, (0, 0, 0), (0, 0, 0),
self.K, self.opencv_dist_coeff)
distorted_image_coords = distorted_image_coords.reshape(-1, 2).T
elif self.calibration_type == 'opencv_fisheye':
# if self.Kundistortion is not np.array([]):
# # remove Kview transformation
# undistorted_image_coords = p2e(np.matmul(np.linalg.inv(self.Kundistortion),
# e2p(undistorted_image_coords)))
# TODO check correctness
undistorted_image_coords = p2e(np.matmul(np.linalg.inv(Kundistortion),
e2p(undistorted_image_coords)))
distorted_image_coords = cv2.fisheye.distortPoints(undistorted_image_coords.T.reshape((1, -1, 2)),
self.K, self.opencv_dist_coeff).reshape(-1, 2).T
else:
assert False # not implemented
assert distorted_image_coords.shape[0] == 2
assert distorted_image_coords.ndim == 2
return distorted_image_coords
def _distort_bouguet(self, undistorted_centered_image_coord):
"""
Distort centered image coordinate following Bouquet model.
see http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
:param undistorted_centered_image_coord: linear centered image coordinate(s)
:type undistorted_centered_image_coord: numpy.ndarray, shape=(2, n)
:return: distorted coordinate(s)
:rtype: numpy.ndarray, shape=(2, n)
"""
assert undistorted_centered_image_coord.shape[0] == 2
kc = self.bouguet_kc
x = undistorted_centered_image_coord[0, :]
y = undistorted_centered_image_coord[1, :]
r_squared = x ** 2 + y ** 2
# tangential distortion vector
dx = np.array([2 * kc[2] * x * y + kc[3] * (r_squared + 2 * x ** 2),
kc[2] * (r_squared + 2 * y ** 2) + 2 * kc[3] * x * y])
distorted = (1 + kc[0] * r_squared + kc[1] * r_squared ** 2 + kc[4] * r_squared ** 3) * \
undistorted_centered_image_coord + dx
return distorted
def _distort_kannala(self, camera_coords):
"""
Distort image coordinate following Kannala model (M6 version only)
See http://www.ee.oulu.fi/~jkannala/calibration/calibration_v23.tar.gz :genericproj.m
Juho Kannala, Janne Heikkila and Sami S. Brandt. Geometric camera calibration. Wiley Encyclopedia of Computer Science and Engineering, 2008, page 9.
:param camera_coords: 3d points in camera coordinates
:type camera_coords: numpy.ndarray, shape=(3, n)
:return: distorted metric image coordinates
:rtype: numpy.ndarray, shape=(2, n)
"""
assert camera_coords.shape[0] == 3
x = camera_coords[0, :]
y = camera_coords[1, :]
z = camera_coords[2, :]
k1 = self.kannala_p[0]
k2 = self.kannala_p[1]
# angle between ray and optical axis
theta = np.arccos(z / np.linalg.norm(camera_coords, axis=0))
# radial projection (Kannala 2008, eq. 17)
r = k1 * theta + k2 * theta ** 3
hypotenuse = np.linalg.norm(camera_coords[0:2, :], axis=0)
hypotenuse[hypotenuse == 0] = 1 # avoid dividing by zero
image_x = r * x / hypotenuse
image_y = r * y / hypotenuse
return np.vstack((image_x, image_y))
def _undistort_tsai(self, distorted_metric_image_coord):
"""
Undistort centered image coordinate following Tsai model.
:param distorted_metric_image_coord: distorted METRIC image coordinates
(metric image coordiante = image_xy * f / z)
:type distorted_metric_image_coord: numpy.ndarray, shape=(2, n)
:return: linear image coordinate(s)
:rtype: numpy.ndarray, shape=(2, n)
"""
assert distorted_metric_image_coord.shape[0] == 2
# see http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/DIAS1/
x = distorted_metric_image_coord[0, :]
y = distorted_metric_image_coord[1, :]
r_squared = x ** 2 + y ** 2
undistorted = (1 + self.tsai_kappa * r_squared) * distorted_metric_image_coord
return undistorted
def _distort_tsai(self, metric_image_coord):
"""
Distort centered metric image coordinates following Tsai model.
See: Devernay, Frederic, and Olivier Faugeras. "Straight lines have to be straight."
Machine vision and applications 13.1 (2001): 14-24. Section 2.1.
(only for illustration, the formulas didn't work for me)
http://www.cvg.rdg.ac.uk/PETS2009/sample.zip :CameraModel.cpp:CameraModel::undistortedToDistortedSensorCoord
Analytical inverse of the undistort_tsai() function.
:param metric_image_coord: centered metric image coordinates
(metric image coordinate = image_xy * f / z)
:type metric_image_coord: numpy.ndarray, shape=(2, n)
:return: distorted centered metric image coordinates
:rtype: numpy.ndarray, shape=(2, n)
"""
assert metric_image_coord.shape[0] == 2
x = metric_image_coord[0, :] # vector
y = metric_image_coord[1, :] # vector
r_u = np.sqrt(x ** 2 + y ** 2) # vector
c = 1.0 / self.tsai_kappa # scalar
d = -c * r_u # vector
# solve polynomial of 3rd degree for r_distorted using Cardan method:
# https://proofwiki.org/wiki/Cardano%27s_Formula
# r_distorted ** 3 + c * r_distorted + d = 0
q = c / 3. # scalar
r = -d / 2. # vector
delta = q ** 3 + r ** 2 # polynomial discriminant, vector
positive_mask = delta >= 0
r_distorted = np.zeros((metric_image_coord.shape[1]))
# discriminant > 0
s = cbrt(r[positive_mask] + np.sqrt(delta[positive_mask]))
t = cbrt(r[positive_mask] - np.sqrt(delta[positive_mask]))
r_distorted[positive_mask] = s + t
# discriminant < 0
delta_sqrt = np.sqrt(-delta[~positive_mask])
s = cbrt(np.sqrt(r[~positive_mask] ** 2 + delta_sqrt ** 2))
# s = cbrt(np.sqrt(r[~positive_mask] ** 2 + (-delta[~positive_mask]) ** 2))
t = 1. / 3 * np.arctan2(delta_sqrt, r[~positive_mask])
r_distorted[~positive_mask] = -s * np.cos(t) + s * np.sqrt(3) * np.sin(t)
return metric_image_coord * r_distorted / r_u
def _undistort_division(self, z_r):
"""
Undistort centered image coordinate(s) following the division model.
:param z_r: radially distorted centered image coordinate(s)
:type z_r: numpy.ndarray, shape(2, n)
:return: linear image coordinate(s)
:rtype: numpy.ndarray, shape(2, n)
"""
assert (-1 < self.division_lambda < 1)
return (1 - self.division_lambda) / \
(1 - self.division_lambda * np.sum(z_r ** 2, axis=0) / self.division_z_n ** 2) * z_r
def _distort_division(self, z_l):
"""
Distort centered image coordinate(s) following the division model.
:param z_l: linear centered image coordinate(s)
:type z_l: numpy.ndarray, shape(2, n)
:return: radially distorted image coordinate(s)
:rtype: numpy.ndarray, shape(2, n)
"""
z_hat = 2 * z_l / (1 - self.division_lambda)
return z_hat / (1 + np.sqrt(1 + self.division_lambda * np.sum(z_hat ** 2, axis=0) /
np.sum(self.division_z_n ** 2, axis=0)))
def get_focal_length(self):
"""
Get camera focal length.
:return: focal length
:rtype: double
"""
return self.K[0, 0]
def get_principal_point_px(self):
"""
Get camera principal point.
:return: x and y pixel coordinates
:rtype: numpy.ndarray, shape=(1, 2)
"""
return self.K[0:2, 2].reshape((1, 2))
def is_visible(self, xy_px):
"""
Check visibility of image points.
:param xy_px: image point(s)
:type xy_px: np.ndarray, shape=(2, n)
:return: visibility of image points
:rtype: numpy.ndarray, shape=(1, n), dtype=bool
"""
assert xy_px.shape[0] == 2
return (xy_px[0, :] >= 0) & (xy_px[1, :] >= 0) & \
(xy_px[0, :] < self.size_px[0]) & \
(xy_px[1, :] < self.size_px[1])
def is_visible_world(self, world):
"""
Check visibility of world points.
:param world: world points
:type world: numpy.ndarray, shape=(3, n)
:return: visibility of world points
:rtype: numpy.ndarray, shape=(1, n), dtype=bool
"""
assert world.shape[0] == 3
xy_px = p2e(self.world_to_image(world))
return self.is_visible(xy_px)
def get_camera_center(self):
"""
Returns camera center in the world coordinates.
:return: camera center in projective coordinates
:rtype: np.ndarray, shape=(4, 1)
"""
return self._null(self.P)
def world_to_image(self, world):
"""
Project world coordinates to image coordinates.
:param world: world points in 3d projective or euclidean coordinates
:type world: numpy.ndarray, shape=(3 or 4, n)
:return: projective image coordinates
:rtype: numpy.ndarray, shape=(3, n)
"""
assert(type(world) == np.ndarray)
if self.calibration_type == 'opencv' or self.calibration_type == 'opencv_fisheye':
if world.shape[0] == 4:
world = p2e(world)
if self.calibration_type == 'opencv':
distorted_image_coords = cv2.projectPoints(world.T, self.R, self.t,
self.K, self.opencv_dist_coeff)[0].reshape(-1, 2).T
else:
distorted_image_coords = cv2.fisheye.projectPoints(
world.T.reshape((1, -1, 3)), cv2.Rodrigues(self.R)[0],
self.t, self.K, self.opencv_dist_coeff)[0].reshape(-1, 2).T
return e2p(distorted_image_coords)
if world.shape[0] == 3:
world = e2p(world)
camera_coords = np.hstack((self.R, self.t)).dot(world)
if self.calibration_type == 'bouguet':
xy = camera_coords[0:2, :]
z = camera_coords[2, :]
image_coords_metric = xy / z
image_coords_distorted_metric = self._distort_bouguet(image_coords_metric)
return self.K.dot(e2p(image_coords_distorted_metric))
elif self.calibration_type == 'tsai':
xy = camera_coords[0:2, :]
z = camera_coords[2, :]
image_coords_metric = xy * self.tsai_f / z
image_coords_distorted_metric = self._distort_tsai(image_coords_metric)
return self.K.dot(e2p(image_coords_distorted_metric))
elif self.calibration_type == 'kannala':
image_coords_distorted_metric = self._distort_kannala(camera_coords)
return self.K.dot(e2p(image_coords_distorted_metric))
elif self.calibration_type == 'division':
# see [1, page 54]
return self.get_A().dot(e2p(self._distort_division(p2e(self.get_k0().dot(camera_coords)))))
else:
xy = camera_coords[0:2, :]
z = camera_coords[2, :]
image_coords_distorted_metric = xy / z
return self.K.dot(e2p(image_coords_distorted_metric))
def image_to_world(self, image_px, z):
"""
Project image points with defined world z to world coordinates.
:param image_px: image points
:type image_px: numpy.ndarray, shape=(2 or 3, n)
:param z: world z coordinate of the projected image points
:type z: float
:return: n projective world coordinates
:rtype: numpy.ndarray, shape=(3, n)
"""
if image_px.shape[0] == 3:
image_px = p2e(image_px)
image_undistorted = self.undistort(image_px)
tmpP = np.hstack((self.P[:, [0, 1]], self.P[:, 2, np.newaxis] * z + self.P[:, 3, np.newaxis]))
world_xy = p2e(np.linalg.inv(tmpP).dot(e2p(image_undistorted)))
return np.vstack((world_xy, z * np.ones(image_px.shape[1])))
def get_view_matrix(self, alpha):
"""
Returns camera matrix for handling image and coordinates distortion and undistortion. Based on alpha,
up to all pixels of the distorted image can be visible in the undistorted image.
:param alpha: Free scaling parameter between 0 (when all the pixels in the undistorted image are valid) and 1
(when all the source image pixels are retained in the undistorted image). For convenience for -1
returns custom camera matrix self.Kundistortion and None returns self.K.
:type alpha: float or None
:return: camera matrix for a view defined by alpha
:rtype: array, shape=(3, 3)
"""
if alpha == -1:
Kundistortion = self.Kundistortion
elif alpha is None:
Kundistortion = self.K
elif self.calibration_type == 'opencv':
Kundistortion, _ = cv2.getOptimalNewCameraMatrix(self.K, self.opencv_dist_coeff, tuple(self.size_px), alpha)
elif self.calibration_type == 'opencv_fisheye':
Kundistortion = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(self.K, self.opencv_dist_coeff,
tuple(self.size_px), self.R,
balance=alpha)
else:
# TODO
assert False, 'not implemented'
return Kundistortion
def plot_world_points(self, points, plot_style, label=None,
solve_visibility=True):
"""
Plot world points to a matplotlib figure.
:param points: world points (projective or euclidean)
:type points: numpy.ndarray, shape=(3 or 4, n) or list of lists
:param plot_style: matplotlib point and line style code, e.g. 'ro'
:type plot_style: str
:param label: label plotted under points mean
:type label: str
:param solve_visibility: if true then plot only if all points are visible
:type solve_visibility: bool
"""
object_label_y_shift = +25
import matplotlib.pyplot as plt
if type(points) == list:
points = np.array(points)
points = np.atleast_2d(points)
image_points_px = p2e(self.world_to_image(points))
if not solve_visibility or np.all(self.is_visible(image_points_px)):
plt.plot(image_points_px[0, :],
image_points_px[1, :], plot_style)
if label:
max_y = max(image_points_px[1, :])
mean_x = image_points_px[0, :].mean()
plt.text(mean_x, max_y + object_label_y_shift, label)
def _null(self, A, eps=1e-15):
"""
Matrix null space.
For matrix null space holds: A * null(A) = zeros
source: http://mail.scipy.org/pipermail/scipy-user/2005-June/004650.html
:param A: input matrix
:type A: numpy.ndarray, shape=(m, n)
:param eps: values lower than eps are considered zero
:type eps: double
:return: null space of the matrix A
:rtype: numpy.ndarray, shape=(n, 1)
"""
u, s, vh = np.linalg.svd(A)
n = A.shape[1] # the number of columns of A
if len(s) < n:
expanded_s = np.zeros(n, dtype=s.dtype)
expanded_s[:len(s)] = s
s = expanded_s
null_mask = (s <= eps)
null_space = np.compress(null_mask, vh, axis=0)
return np.transpose(null_space)
def nview_linear_triangulation(cameras, correspondences,weights = None):
"""
Computes ONE world coordinate from image correspondences in n views.
:param cameras: pinhole models of cameras corresponding to views
:type cameras: sequence of Camera objects
:param correspondences: image coordinates correspondences in n views
:type correspondences: numpy.ndarray, shape=(2, n)
:return: world coordinate
:rtype: numpy.ndarray, shape=(3, 1)
"""
assert(len(cameras) >= 2)
assert(type(cameras) == list)
assert(correspondences.shape == (2, len(cameras)))
def _construct_D_block(P, uv,w=1):
"""
Constructs 2 rows block of matrix D.
See [1, p. 88, The Triangulation Problem]
:param P: camera matrix
:type P: numpy.ndarray, shape=(3, 4)
:param uv: image point coordinates (xy)
:type uv: numpy.ndarray, shape=(2,)
:return: block of matrix D
:rtype: numpy.ndarray, shape=(2, 4)
"""
return w*np.vstack((uv[0] * P[2, :] - P[0, :],
uv[1] * P[2, :] - P[1, :]))
# testing weighted least squares
if weights is None:
w = np.ones(len(cameras))
weights = [1 for i in range(len(cameras))]
else:
w = [np.nan_to_num(wi,nan=0.5) for wi in weights] # turns nan confidences into 0.5
D = np.zeros((len(cameras) * 2, 4))
for cam_idx, cam, uv in zip(range(len(cameras)), cameras, correspondences.T):
D[cam_idx * 2:cam_idx * 2 + 2, :] = _construct_D_block(cam.P, uv,w=w[cam_idx])
Q = D.T.dot(D)
u, s, vh = np.linalg.svd(Q)
pt3d = p2e(u[:, -1, np.newaxis])
weightArray = np.asarray(weights)
if np.count_nonzero(weights)<2:
# return 0s if there aren't at least 2 cameras with confidence
pt3d = np.zeros_like(pt3d)
conf = 0
else:
# if all nan slice (all cameras were splined)
if all(np.isnan(weightArray[weightArray!=0])):
conf=.5 # nans get 0.5 confidence
else:
conf = np.nanmean(weightArray[weightArray!=0])
return pt3d,conf
def nview_linear_triangulations(cameras, image_points,weights=None):
"""
Computes world coordinates from image correspondences in n views.
:param cameras: pinhole models of cameras corresponding to views
:type cameras: sequence of Camera objects
:param image_points: image coordinates of m correspondences in n views
:type image_points: sequence of m numpy.ndarray, shape=(2, n)
:return: m world coordinates
:rtype: numpy.ndarray, shape=(3, m)
:weights: numpy.ndarray, shape(nMkrs,nCams)
"""
assert(type(cameras) == list)
assert(type(image_points) == list)
assert(len(cameras) == image_points[0].shape[1])
assert(image_points[0].shape[0] == 2)
world = np.zeros((3, len(image_points)))
confidence = np.zeros((1,len(image_points)))
for i, correspondence in enumerate(image_points):
if weights is not None:
w = [w[i] for w in weights]
else:
w = None
pt3d, conf = nview_linear_triangulation(cameras, correspondence,weights=w)
world[:, i] = np.ndarray.flatten(pt3d)
confidence[0,i] = conf
return world,confidence
def calibrate_division_model(line_coordinates, y0, z_n, focal_length=1):
"""
Calibrate division model by making lines straight.
:param line_coordinates: coordinates of points on lines
:type line_coordinates: np.ndarray, shape=(nlines, npoints_per_line, 2)
:param y0: radial distortion center xy coordinates
:type y0: array-like, len=2
:param z_n: distance to boundary (pincushion: image width / 2, barrel: image diagonal / 2)
:type z_n: float
:param focal_length: focal length of the camera (optional)
:type focal_length: float
:return: Camera object with calibrated division model parameter lambda
:rtype: Camera
"""
def lines_fit_error(p, line_coordinates, cam):
if not (-1 < p < 1):
return np.inf
assert line_coordinates.ndim == 3
cam.division_lambda = p
error = 0.
for line in range(line_coordinates.shape[0]):
xy = cam.undistort(line_coordinates[line].T)
mc = fit_line(xy)
d = line_point_distance(xy, mc)
nearest_xy = nearest_point_on_line(xy, mc)
line_length_sq = np.sum((nearest_xy[:, 0] - nearest_xy[:, -1]) ** 2)
error += np.sum(d ** 2) / line_length_sq / line_coordinates.shape[1]
# plt.plot(x, mc[0] * x + mc[1], 'y')
# plt.plot(nx, ny, 'y+')
# plt.plot(x, y, 'r+')
# plt.show()
return error
c = Camera()
c.set_K_elements(u0_px=y0[0], v0_px=y0[1], f=focal_length)
c.calibration_type = 'division'
c.division_z_n = z_n
res = minimize_scalar(lambda p: lines_fit_error(p, line_coordinates, c))
c.division_lambda = float(res.x)
return c