forked from stanfordnmbl/opencap-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilsDataman.py
282 lines (236 loc) · 9.66 KB
/
utilsDataman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""Manages the movement and use of data files."""
import os
import warnings
from scipy.spatial.transform import Rotation as R
import numpy as np
from numpy.lib.recfunctions import append_fields
class TRCFile(object):
"""A plain-text file format for storing motion capture marker trajectories.
TRC stands for Track Row Column.
The metadata for the file is stored in attributes of this object.
See
http://simtk-confluence.stanford.edu:8080/display/OpenSim/Marker+(.trc)+Files
for more information.
"""
def __init__(self, fpath=None, **kwargs):
#path=None,
#data_rate=None,
#camera_rate=None,
#num_frames=None,
#num_markers=None,
#units=None,
#orig_data_rate=None,
#orig_data_start_frame=None,
#orig_num_frames=None,
#marker_names=None,
#time=None,
#):
"""
Parameters
----------
fpath : str
Valid file path to a TRC (.trc) file.
"""
self.marker_names = []
if fpath != None:
self.read_from_file(fpath)
else:
for k, v in kwargs.items():
setattr(self, k, v)
def read_from_file(self, fpath):
# Read the header lines / metadata.
# ---------------------------------
# Split by any whitespace.
# TODO may cause issues with paths that have spaces in them.
f = open(fpath)
# These are lists of each entry on the first few lines.
first_line = f.readline().split()
# Skip the 2nd line.
f.readline()
third_line = f.readline().split()
fourth_line = f.readline().split()
f.close()
# First line.
if len(first_line) > 3:
self.path = first_line[3]
else:
self.path = ''
# Third line.
self.data_rate = float(third_line[0])
self.camera_rate = float(third_line[1])
self.num_frames = int(third_line[2])
self.num_markers = int(third_line[3])
self.units = third_line[4]
self.orig_data_rate = float(third_line[5])
self.orig_data_start_frame = int(third_line[6])
self.orig_num_frames = int(third_line[7])
# Marker names.
# The first and second column names are 'Frame#' and 'Time'.
self.marker_names = fourth_line[2:]
len_marker_names = len(self.marker_names)
if len_marker_names != self.num_markers:
warnings.warn('Header entry NumMarkers, %i, does not '
'match actual number of markers, %i. Changing '
'NumMarkers to match actual number.' % (
self.num_markers, len_marker_names))
self.num_markers = len_marker_names
# Load the actual data.
# ---------------------
col_names = ['frame_num', 'time']
# This naming convention comes from OpenSim's Inverse Kinematics tool,
# when it writes model marker locations.
for mark in self.marker_names:
col_names += [mark + '_tx', mark + '_ty', mark + '_tz']
dtype = {'names': col_names,
'formats': ['int'] + ['float64'] * (3 * self.num_markers + 1)}
usecols = [i for i in range(3 * self.num_markers + 1 + 1)]
self.data = np.loadtxt(fpath, delimiter='\t', skiprows=5, dtype=dtype,
usecols=usecols)
self.time = self.data['time']
# Check the number of rows.
n_rows = self.time.shape[0]
if n_rows != self.num_frames:
warnings.warn('%s: Header entry NumFrames, %i, does not '
'match actual number of frames, %i, Changing '
'NumFrames to match actual number.' % (fpath,
self.num_frames, n_rows))
self.num_frames = n_rows
def __getitem__(self, key):
"""See `marker()`.
"""
return self.marker(key)
def units(self):
return self.units
def time(self):
this_dat = np.empty((self.num_frames, 1))
this_dat[:, 0] = self.time
return this_dat
def marker(self, name):
"""The trajectory of marker `name`, given as a `self.num_frames` x 3
array. The order of the columns is x, y, z.
"""
this_dat = np.empty((self.num_frames, 3))
this_dat[:, 0] = self.data[name + '_tx']
this_dat[:, 1] = self.data[name + '_ty']
this_dat[:, 2] = self.data[name + '_tz']
return this_dat
def add_marker(self, name, x, y, z):
"""Add a marker, with name `name` to the TRCFile.
Parameters
----------
name : str
Name of the marker; e.g., 'R.Hip'.
x, y, z: array_like
Coordinates of the marker trajectory. All 3 must have the same
length.
"""
if (len(x) != self.num_frames or len(y) != self.num_frames or len(z) !=
self.num_frames):
raise Exception('Length of data (%i, %i, %i) is not '
'NumFrames (%i).', len(x), len(y), len(z), self.num_frames)
self.marker_names += [name]
self.num_markers += 1
if not hasattr(self, 'data'):
self.data = np.array(x, dtype=[('%s_tx' % name, 'float64')])
self.data = append_fields(self.data,
['%s_t%s' % (name, s) for s in 'yz'],
[y, z], usemask=False)
else:
self.data = append_fields(self.data,
['%s_t%s' % (name, s) for s in 'xyz'],
[x, y, z], usemask=False)
def marker_at(self, name, time):
x = np.interp(time, self.time, self.data[name + '_tx'])
y = np.interp(time, self.time, self.data[name + '_ty'])
z = np.interp(time, self.time, self.data[name + '_tz'])
return [x, y, z]
def marker_exists(self, name):
"""
Returns
-------
exists : bool
Is the marker in the TRCFile?
"""
return name in self.marker_names
def write(self, fpath):
"""Write this TRCFile object to a TRC file.
Parameters
----------
fpath : str
Valid file path to which this TRCFile is saved.
"""
f = open(fpath, 'w')
# Line 1.
f.write('PathFileType 4\t(X/Y/Z) %s\n' % os.path.split(fpath)[0])
# Line 2.
f.write('DataRate\tCameraRate\tNumFrames\tNumMarkers\t'
'Units\tOrigDataRate\tOrigDataStartFrame\tOrigNumFrames\n')
# Line 3.
f.write('%.1f\t%.1f\t%i\t%i\t%s\t%.1f\t%i\t%i\n' % (
self.data_rate, self.camera_rate, self.num_frames,
self.num_markers, self.units, self.orig_data_rate,
self.orig_data_start_frame, self.orig_num_frames))
# Line 4.
f.write('Frame#\tTime\t')
for imark in range(self.num_markers):
f.write('%s\t\t\t' % self.marker_names[imark])
f.write('\n')
# Line 5.
f.write('\t\t')
for imark in np.arange(self.num_markers) + 1:
f.write('X%i\tY%s\tZ%s\t' % (imark, imark, imark))
f.write('\n')
# Line 6.
f.write('\n')
# Data.
for iframe in range(self.num_frames):
f.write('%i' % (iframe + 1))
f.write('\t%.7f' % self.time[iframe])
for mark in self.marker_names:
idxs = [mark + '_tx', mark + '_ty', mark + '_tz']
f.write('\t%.7f\t%.7f\t%.7f' % tuple(
self.data[coln][iframe] for coln in idxs))
f.write('\n')
f.close()
def add_noise(self, noise_width):
""" add random noise to each component of the marker trajectory
The noise mean will be zero, with the noise_width being the
standard deviation.
noise_width : int
"""
for imarker in range(self.num_markers):
components = ['_tx', '_ty', '_tz']
for iComponent in range(3):
# generate noise
noise = np.random.normal(0, noise_width, self.num_frames)
# add noise to each component of marker data.
self.data[self.marker_names[imarker] + components[iComponent]] += noise
def rotate(self, axis, value):
""" rotate the data.
axis : rotation axis
value : angle in degree
"""
for imarker in range(self.num_markers):
temp = np.zeros((self.num_frames, 3))
temp[:,0] = self.data[self.marker_names[imarker] + '_tx']
temp[:,1] = self.data[self.marker_names[imarker] + '_ty']
temp[:,2] = self.data[self.marker_names[imarker] + '_tz']
r = R.from_euler(axis, value, degrees=True)
temp_rot = r.apply(temp)
self.data[self.marker_names[imarker] + '_tx'] = temp_rot[:,0]
self.data[self.marker_names[imarker] + '_ty'] = temp_rot[:,1]
self.data[self.marker_names[imarker] + '_tz'] = temp_rot[:,2]
def offset(self, axis, value):
""" offset the data.
axis : rotation axis
value : offset in m
"""
for imarker in range(self.num_markers):
if axis.lower() == 'x':
self.data[self.marker_names[imarker] + '_tx'] += value
elif axis.lower() == 'y':
self.data[self.marker_names[imarker] + '_ty'] += value
elif axis.lower() == 'z':
self.data[self.marker_names[imarker] + '_tz'] += value
else:
raise ValueError("Axis not recognized")