-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathqa_manager.py
708 lines (619 loc) · 32.7 KB
/
qa_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# Use OpenAI's GPT-3.5-turbo to generate questions and answer from a given document
from typing import List, Dict, Tuple, Union
from dataclasses import dataclass, asdict
from context_manager import ArxivContext
import sys
import json
import logging
import evaluate
import os
import openai
import time
import pickle
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, pipeline, LlamaForCausalLM, \
LlamaTokenizerFast, GenerationConfig, T5Tokenizer, T5ForConditionalGeneration
from peft import PeftModel
import torch
from tqdm import tqdm
@dataclass
class ContextAndAnswer:
"""
This class stores contexts and its list of masked_contexts.
It also take care of questions and reference answer based on original context.
As well as answers based on masked_context.
should add a function in this class to evaluate/compare answers against reference answer.
"""
reference_context: str
contexts_dict: Dict[str, List[ArxivContext]]
mask_ratio: float
reduced_ratio: Dict[str, float] = None
task_name: str = None
questions: Union[List[str], List[List[str]], Dict[str, List[str]], Dict[str, List[List[str]]]] = None
answer_of_contexts: Dict[str, List[str]] = None
dataset_type : str = None
metrics: Dict[str, float] = None
def __post_init__(self):
reference_contexts = self.contexts_dict[self.reference_context]
self.reduced_ratio = {}
for context_type in self.contexts_dict:
if context_type == self.reference_context:
continue
self.reduced_ratio[context_type] = []
for ref, cont in zip(reference_contexts, self.contexts_dict[context_type]):
sub_len = len(ref.context) - len(cont.context)
if sub_len < 0:
sub_len = 0
self.reduced_ratio[context_type].append(sub_len / len(ref.context))
def __repr__(self):
contexts = '\n'.join(self.contexts_dict.keys())
return f"ContextAndAnswer:\n{contexts}"
class TaskManager:
def __init__(self, task_name, model_type, save_path, only_eval = False, metrics = ['bleu', 'meteor', 'rouge', ]):
self.task_name = task_name
self.model_type = model_type
self.save_path = save_path
if not only_eval:
self._prepare_model()
# self._prepare_evaluation(metrics)
def _prepare_model(self):
# prepare model and generate function
# should support GPT-3.5-turbo, llama-7B,13B,30B, and Flan family?
print(f'-- Start preparing model {self.model_type}.')
if self.model_type == "gpt-3.5-turbo":
self.model_instruct_tuned = True
self._generate_answer = self._gpt_3_5_turbo_generate
elif 'llama' in self.model_type:
self.model_instruct_tuned = False
size = self.model_type.split('-')[-1]
assert size in ['7b', '13b', '30b']
bs = {
'7b': 24,
'13b': 12,
'30b': 6,
}
self.batch_size = bs[size]
if size == '30b':
max_memory = f'{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB'
n_gpus = torch.cuda.device_count()
max_memory = {i: max_memory for i in range(n_gpus)}
self.model = LlamaForCausalLM.from_pretrained(f"huggyllama/llama-{size}", load_in_8bit=True, device_map='auto', max_memory=max_memory, cache_dir="/mnt/fast/nobackup/scratch4weeks/yl02706/HF_Cache")
else:
self.model = LlamaForCausalLM.from_pretrained(f"huggyllama/llama-{size}", torch_dtype=torch.float16, device_map='auto')
self.tokenizer = LlamaTokenizerFast.from_pretrained(f"huggyllama/llama-{size}")
self.model.eval()
self.generation_config = GenerationConfig(
temperature=1.0,
top_k=50,
# top_p=0.9,
eos_token_id=self.tokenizer.eos_token_id,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
# num_beams=4,
)
self._generate_answer = self._lm_generate
elif self.model_type == 'alpaca-lora-7b':
self.model_instruct_tuned = True
base_model = 'huggyllama/llama-7b'
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
tokenizer = LlamaTokenizerFast.from_pretrained(base_model)
model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16, device_map='auto')
model = PeftModel.from_pretrained(model, torch_dtype=torch.float16)
model.eval()
self.batch_size = 24
self.model = model
self.tokenizer = tokenizer
self.generation_config = GenerationConfig(
temperature=1.0,
top_k=50,
# top_p=0.9,
eos_token_id=self.tokenizer.eos_token_id,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
# num_beams=4,
)
self._generate_answer = self._lm_generate
elif 'flan' in self.model_type:
self.model_instruct_tuned = True
tokenizer = T5Tokenizer.from_pretrained(f"google/{model_type}")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xxl", torch_dtype=torch.float16, device_map="auto")
model.eval()
bs = {
'flan-t5-xxl': 12,
'flan-t5-base': 24,
'flan-t5-large': 24,
'flan-t5-xl': 24,
}
self.batch_size = bs[self.model_type]
self.model = model
self.tokenizer = tokenizer
self.generation_config = GenerationConfig(
temperature=1.0,
top_k=50,
# top_p=0.9,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
# num_beams=4,
)
self._generate_answer = self._lm_generate
elif 'vicuna' in self.model_type:
self.model_instruct_tuned = True
size = self.model_type.split('-')[-1]
assert size in ['7B', '13B']
self.batch_size = 12 if size == '13B' else 24
self.model = LlamaForCausalLM.from_pretrained(f"TheBloke/vicuna-{size}-1.1-HF", torch_dtype=torch.float16, device_map='auto')
self.tokenizer = LlamaTokenizerFast.from_pretrained(f"huggyllama/llama-{size}".lower())
self.model.eval()
self.generation_config = GenerationConfig(
temperature=1.0,
top_k=50,
# top_p=0.9,
eos_token_id=self.tokenizer.eos_token_id,
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
# num_beams=4,
)
self._generate_answer = self._lm_generate
def _lm_generate(self, prompt):
# generate answer sequentially
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.model.device)
with torch.no_grad():
outputs = self.model.generate(input_ids, generation_config=self.generation_config, return_dict_in_generate=True, max_new_tokens=500)
s = outputs.sequences[0]
prompt_len = input_ids.shape[1]
output = self.tokenizer.decode(s[prompt_len:])
return output
def _lm_answer_batch(self, prompts):
# generate answer in batchs
if not hasattr(self, 'generator'):
self.tokenizer.pad_token_id = self.model.config.eos_token_id
if 'vicuna' in self.model_type:
generation_config = GenerationConfig(
bos_token_id = 1,
eos_token_id = 2,
pad_token_id = 0,
)
else:
generation_config = None
self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, generation_config=generation_config)
print('Batched generation started. num_prompts:', len(prompts), ', batch_size:', self.batch_size, ', self.model.device:', self.model.device, ', pipeline.device:', self.generator.device)
outputs = self.generator(prompts, max_new_tokens=450, batch_size = self.batch_size, return_full_text=False)
print(outputs)
return [output[0]['generated_text'] for output in outputs]
def _gpt_3_5_turbo_generate(self, prompt, num_retry = 5):
# generate answer by gpt-3.5-turbo
openai_key = os.environ.get("OPENAI_API_KEY")
for _ in range(num_retry):
try:
r = openai.ChatCompletion.create(
model = 'gpt-3.5-turbo',
messages = [
{"role": "user", "content": prompt},
],
)
break
except Exception as e:
print(e)
time.sleep(1)
return r.choices[0]['message']['content']
def prompt_for_the_task(self):
raise NotImplementedError
def _generate_answer(self, prompt):
raise NotImplementedError
def generate_by_openai(self, prompt):
# generate answer by openai
pass
def get_answer(self, contexts: List[ContextAndAnswer]):
raise NotImplementedError
def setup(self, ans: ContextAndAnswer):
self.ans = ans
self.dataset_type = ans.dataset_type
self.mask_ratio = ans.mask_ratio
# see if checkpoint exists
file_path = os.path.join(self.save_path, f'answer_{self.model_type}_{self.task_name}_{self.dataset_type}_{self.mask_ratio}.pkl')
if os.path.exists(file_path):
with open(file_path, 'rb') as f:
pickled_ans = pickle.load(f)
logging.info(f'Loaded from {file_path}')
print(f'Loaded from {file_path}')
# update saved answers and questions to the latest
self.ans.answer_of_contexts = pickled_ans.answer_of_contexts
self.ans.questions = pickled_ans.questions
def save_as_pickle(self):
file_path = os.path.join(self.save_path, f'answer_{self.model_type}_{self.task_name}_{self.dataset_type}_{self.mask_ratio}.pkl')
# save the ContextAndAnswer object as pickle
with open(file_path, 'wb') as f:
pickle.dump(self.ans, f)
logging.info(f'Saved to {file_path}')
print(f'Saved to {file_path}')
def _result_output_path(self, file_path, dataset_type, model_type, context_id, context_type,):
if context_type == 'no':
return os.path.join(file_path, f"{dataset_type}_{model_type}_{context_id}_{context_type}.tsv")
return os.path.join(file_path, f"{dataset_type}_{model_type}_{context_id}_{context_type}_{self.mask_ratio}.tsv")
class Evaluator:
def __init__(self, metrics = ['bleu', 'meteor', 'rouge', ]):
self._prepare_evaluation(metrics)
def _prepare_evaluation(self, metrics: List[str]):
# prepare evaluation
# should support rouge, bleu, and other metrics?
self.metrics = {}
for metric in metrics:
metric_ = evaluate.load(metric)
self.metrics[metric] = metric_
logging.info(f'Finished loading metrics: {self.metrics.keys()}')
print(f'Finished loading metrics: {self.metrics.keys()}')
def evaluate(self, predictions, references):
# evaluate the answer
# should support rouge, bleu, and other metrics?
results = {}
for metric_name, metric in self.metrics.items():
if metric_name == 'bertscore':
score = metric.compute(predictions=predictions, references=references, lang='en')
score = {f'bertscore_{k}': np.mean(v) for k, v in score.items() if k in ['f1', 'precision', 'recall']}
else:
score = metric.compute(predictions=predictions, references=references)
if metric_name == 'bleurt':
score = {f'bleurt_{k}': v for k, v in score.items() if k in ['scores']}
results.update(score)
return results
class Summarisation(TaskManager):
"""
This task is summarisation on the given context.
"""
def __init__(self, task_name, model_type, save_path):
super().__init__(task_name, model_type, save_path)
self.summary_saved_path = os.path.join(self.save_path, task_name,)
if not os.path.exists(self.summary_saved_path):
os.makedirs(self.summary_saved_path)
def prompt_for_the_task(self, context: ArxivContext):
if self.model_type == "flan-t5-xxl":
prompt = f"Summarize: {context.context}"
elif 'vicuna' in self.model_type:
prompt = f'A chat between a curious user and an artificial intelligence assistant. The assistant gives professional answers to the user\'s request.\nUSER: \n----\n {context.context}\n\n----\n\n please summarize the above paragraph.\nASSISTANT:'
elif self.model_instruct_tuned:
prompt = f"{context.context}\n\n----\n\nSummarise the above content."
elif not self.model_instruct_tuned:
prompt = f"{context.context}\n\nTl;dr\n"
# prompt = f"{context.context}\n\nThe summary:"
return prompt
def get_answer(self):
ans = self.ans
answer_of_contexts = ans.answer_of_contexts if ans.answer_of_contexts is not None else {}
for context_type, contexts in ans.contexts_dict.items():
answer_of_contexts[context_type] = []
# if context_type not in answer_of_contexts:
# answer_of_contexts[context_type] = []
# else:
# continue
if self.model_type != "gpt-3.5-turbo":
prompts = []
out_files = []
for context in contexts:
summary_save_file = os.path.join(self.summary_saved_path, f"{ans.dataset_type}_{self.model_type}_{context.id}_{context_type}_{self.mask_ratio}.tsv")
# summary_save_file = self._result_output_path(self.summary_saved_path, ans.dataset_type, self.model_type, context.id, context_type)
if os.path.exists(summary_save_file):
pass
else:
prompt = self.prompt_for_the_task(context)
if self.model_type == "gpt-3.5-turbo":
summary = self._generate_answer(prompt)
# save the summary
with open(summary_save_file, 'w') as f:
f.write(summary)
else:
prompts.append(prompt)
out_files.append(summary_save_file)
if self.model_type != "gpt-3.5-turbo" and len(prompts)!=0:
# generate answers
summaries = self._lm_answer_batch(prompts)
for summary, summary_save_file in zip(summaries, out_files):
# save the summary
with open(summary_save_file, 'w') as f:
f.write(summary)
print(f"Saved to {summary_save_file}")
for context in contexts:
summary_save_file = os.path.join(self.summary_saved_path, f"{ans.dataset_type}_{self.model_type}_{context.id}_{context_type}_{self.mask_ratio}.tsv")
# summary_save_file = self._result_output_path(self.summary_saved_path, ans.dataset_type, self.model_type, context.id, context_type)
# load the summary
with open(summary_save_file, 'r') as f:
summary = f.read()
if self.model_instruct_tuned:
if 'ASSISTANT:' in summary:
summary = summary.split('ASSISTANT:', 1)[1].strip()
else:
summary = summary
elif not self.model_instruct_tuned:
summary = summary.rsplit('\n', 1)[0].strip()
answer_of_contexts[context_type].append(summary)
ans.answer_of_contexts = answer_of_contexts
self.ans = ans
logging.info(f"Summarisation task is done.")
return ans
def evaluate(self, evaluator: Evaluator):
# evaluate the summarisation task
# try to use BLEU, ROUGE, METEOR, and BERTScore
# bleu, bertscore, meteor, rouge all implemented by huggingface.metrics
contexts = self.ans
reference_context = contexts.reference_context
reference_answer = contexts.answer_of_contexts[reference_context]
performance = {}
for context_type in contexts.answer_of_contexts:
if context_type == reference_context:
continue
answer = contexts.answer_of_contexts[context_type]
reference_answer_ = reference_answer[:len(answer)]
answers_ = []
ref_ = []
for a, r in zip(answer, reference_answer_):
if isinstance(a, float) or isinstance(r, float):
continue
answers_.append(a)
ref_.append(r)
performance[context_type] = evaluator.evaluate(predictions=answers_, references=ref_)
self.ans.metrics = performance
return performance
class MaskedTargetingQA(TaskManager):
"""
This task is questions targeting on the masked sentences.
"""
def __init__(self, task_name, model_type):
super().__init__(task_name, model_type)
def prompt_for_the_task(self):
# prepare the prompt for the masked targeting QA task
pass
def get_answer(self, prompt):
# generate answer for the given prompt
pass
class QA(TaskManager):
"""
This task conducts general QA on the given context.
It first generate questions based on the given context.
Then it generate answers for the questions given list of contexts.
Note that the questions generated are shared across all contexts.
"""
def __init__(self, task_name, model_type, save_path):
super().__init__(task_name, model_type, save_path)
self.question_saved_path = os.path.join(self.save_path, task_name,)
if not os.path.exists(self.question_saved_path):
os.makedirs(self.question_saved_path)
def generate_questions(self, ans: ContextAndAnswer):
# see if the questions are already generated
if ans.questions is not None:
return ans
# generate questions based on the origin context
origin_contexts = ans.contexts_dict[ans.reference_context]
all_questions = []
reference_answers = []
for cont in origin_contexts:
question_save_file = os.path.join(self.question_saved_path, f"{ans.dataset_type}_{cont.id}.tsv")
if os.path.exists(question_save_file):
pass
else:
# generate questions
prompt = self.prompt_for_the_task(cont, task = "question_generation")
questions = self._generate_answer(prompt)
# save the questions
with open(question_save_file, "w") as f:
f.write(questions)
# load the questions
try:
questions = pd.read_csv(question_save_file, sep = "\t", on_bad_lines='skip')
questions_ = questions['Question'].tolist()
answers = questions['Answer'].tolist()
except Exception as e:
print(f'File parse Error. {question_save_file}')
questions_ = None
answers = None
all_questions.append(questions_)
reference_answers.append(answers)
ans.questions = all_questions
if self.model_type == 'gpt-3.5-turbo':
# other models need to generate answers from scratch
ans.answer_of_contexts = {ans.reference_context: reference_answers}
return ans
def prompt_for_the_task(self, context: ArxivContext, task : str, questions: List[str] = None):
assert task in ["question_generation", "answer_generation"], "task should be either question_generation or answer_generation"
# prepare the prompt for question generation
if task == "question_generation":
prompt = f"Please generate a tsv file containing a list of question and answer based on the following given context. Remember, generate only the tsv content and nothing else. The two column names should be Question and Answer.\n\n---\n{context.context}"
elif task == "answer_generation":
questions = "\n".join([f"{idx+1}. {qus}" for idx, qus in enumerate(questions)])
if self.model_type == 'flan-t5-xxl':
prompt = f"Passage: {context.context}\n\nQuestions:\n{questions}\n\n Answers:"
elif 'vicuna' in self.model_type:
prompt = f'A chat between a curious user and an artificial intelligence assistant. The assistant gives professional answers to the user\'s request.\nUSER: \n----\n {context.context}\n\n----\n\n please answer the following questions based on the given paragraph above.\n{questions}\n ASSISTANT:'
elif not self.model_instruct_tuned:
prompt = f"{context.context}\n\nGiven the above passage, they are asked to answer the following questions:\n{questions}\n\n the answer for each question is:\n\n"
elif self.model_instruct_tuned:
prompt = f"{context.context}\n\nGiven the above passage, answer the following questions:\n{questions}:"
# prompt = f"Please generate a tsv file to answer the given questions based on the following given paragraph. Remember, generate only two columns for the question number and answers and nothing else. The column names should be Num and Answer.\n\n---Paragraph\n{context.context}\n\n---Questions\n{questions}"
return prompt
def get_answer(self):
ans = self.ans
answer_of_contexts = ans.answer_of_contexts
logging.info(f"Answer generation task is started.")
for context_type, contexts in ans.contexts_dict.items():
answer_of_contexts[context_type] = []
# if context_type not in answer_of_contexts:
# answer_of_contexts[context_type] = []
# else:
# continue
if self.model_type != 'gpt-3.5-turbo':
prompts = []
out_files = []
for index, context in enumerate(contexts):
if ans.questions[index] is None:
answer_of_contexts[context_type].append(None)
continue
answer_save_file = self._result_output_path(self.question_saved_path, ans.dataset_type, self.model_type, context.id, context_type)
if os.path.exists(answer_save_file):
pass
else:
# generate questions
prompt = self.prompt_for_the_task(context, task = "answer_generation", questions = ans.questions[index])
if self.model_type == 'gpt-3.5-turbo':
# which means the model is running on OpenAI, so we do sequential generation
answers = self._generate_answer(prompt)
# save the questions
with open(answer_save_file, "w") as f:
f.write(answers)
else:
# which means the model is running on real machine, so we do batch generation
prompts.append(prompt)
out_files.append(answer_save_file)
if self.model_type != 'gpt-3.5-turbo' and len(prompts)!=0:
outs = self._lm_answer_batch(prompts)
for out_file, out in zip(out_files, outs):
with open(out_file, "w") as f:
# we do not process the original output, we leave it to the post-processing below
f.write(out)
for index, context in enumerate(contexts):
if ans.questions[index] is None:
continue
answer_save_file = self._result_output_path(self.question_saved_path, ans.dataset_type, self.model_type, context.id, context_type)
# load the answers
try:
with open(answer_save_file, "r") as f:
answer = f.read()
if not self.model_instruct_tuned:
answers = [answer.rsplit("\n\n", 1)[0]]
elif self.model_instruct_tuned:
if 'ASSISTANT:' in answer:
answers = answer.split('ASSISTANT:', 1)[1].strip()
else:
answers = [answer]
# elif self.model_type == 'gpt-3.5-turbo':
# answers = pd.read_csv(f, sep = "\t", on_bad_lines='skip')
# answers = answers['Answer'].tolist()
# assert len(answers) == len(ans.questions[index]), f"the number of answers {len(answers)} should be equal to the number of questions {len(ans.questions[index])}"
except Exception as e:
print(f'Answer file parse Error. {answer_save_file}')
print(f'Error message: {e}')
answers = None
answer_of_contexts[context_type].append(answers)
ans.answer_of_contexts = answer_of_contexts
self.ans = ans
logging.info(f"Summarisation task is done.")
return ans
def evaluate(self, evaluator: Evaluator):
# evaluate the summarisation task
# try to use BLEU, ROUGE, METEOR, and BERTScore
# bleu, bertscore, meteor, rouge all implemented by huggingface.metrics
contexts = self.ans
reference_context = contexts.reference_context
reference_answer = contexts.answer_of_contexts[reference_context]
performance = {}
for context_type in contexts.answer_of_contexts:
if context_type == reference_context:
continue
performance[context_type] = {}
# the answers here is a list of list of answers, should be flatten into a 1-D list
# also remember to remove the None answers
answers = contexts.answer_of_contexts[context_type]
flatten_answer = []
flatten_reference_answer = []
for p_a, r_a in zip(answers, reference_answer):
if p_a is None or r_a is None:
continue
assert len(p_a) == len(r_a), f"the number of answers {len(p_a)} should be equal to the number of reference answers {len(r_a)}"
for p, r in zip(p_a, r_a):
if isinstance(p, float) or isinstance(r, float):
continue
flatten_answer.append(p)
flatten_reference_answer.append(r)
performance[context_type] = evaluator.evaluate(flatten_answer, flatten_reference_answer)
self.ans.metrics = performance
return performance
def setup(self, ans):
super().setup(ans)
self.ans = self.generate_questions(ans)
class OriginalContextReconsutrction(TaskManager):
def __init__(self, task_name, model_type, save_path):
super().__init__(task_name, model_type, save_path)
self.summary_saved_path = os.path.join(self.save_path, task_name,)
if not os.path.exists(self.summary_saved_path):
os.makedirs(self.summary_saved_path)
def get_answer(self):
ans = self.ans
answer_of_contexts = ans.answer_of_contexts if ans.answer_of_contexts is not None else {}
logging.info(f"Reconstruction task is started.")
for context_type, contexts in ans.contexts_dict.items():
if context_type == ans.reference_context:
answer_of_contexts[context_type] = [context.context for context in contexts]
continue
if context_type not in answer_of_contexts:
answer_of_contexts[context_type] = []
else:
continue
if self.model_type != 'gpt-3.5-turbo':
prompts = []
out_files = []
for context in contexts:
summary_save_file = os.path.join(self.summary_saved_path, f"{ans.dataset_type}_{self.model_type}_{context.id}_{context_type}_{self.mask_ratio}.tsv")
if os.path.exists(summary_save_file):
pass
else:
prompt = self.prompt_for_the_task(context)
if self.model_type != 'gpt-3.5-turbo':
prompts.append(prompt)
out_files.append(summary_save_file)
else:
summary = self._generate_answer(prompt)
# save the summary
with open(summary_save_file, 'w') as f:
f.write(summary)
if self.model_type != 'gpt-3.5-turbo' and len(prompts)!=0:
# generate the summaries in batch
outs = self._lm_answer_batch(prompts)
for out, out_file in zip(outs, out_files):
with open(out_file, 'w') as f:
f.write(out)
for context in contexts:
summary_save_file = os.path.join(self.summary_saved_path, f"{ans.dataset_type}_{self.model_type}_{context.id}_{context_type}_{self.mask_ratio}.tsv")
# load the summary
with open(summary_save_file, 'r') as f:
summary = f.read()
if not self.model_instruct_tuned:
summary = summary.rsplit("\n", 1)[0]
elif self.model_instruct_tuned:
if 'ASSISTANT:' in summary:
summary = summary.split('ASSISTANT:', 1)[1].strip()
else:
summary = summary
answer_of_contexts[context_type].append(summary)
ans.answer_of_contexts = answer_of_contexts
self.ans = ans
logging.info(f"Reconstruction task is done.")
print(f"Reconstruction task is done.")
return ans
def prompt_for_the_task(self, context: ArxivContext):
# prepare the prompt for original context reconstruction
if 'vicuna' in self.model_type:
prompt = f'A chat between a curious user and an artificial intelligence assistant. The assistant gives professional answers to the user\'s request.\nUSER: \n----\n {context.context}\n\n----\n\nThere are some phrases omitted in the following paragraphs. Please infer the missing parts based on contextual clues, reconstruct and show me the original content.\nASSISTANT: The original content is as fellow: '
elif self.model_instruct_tuned:
prompt = f"There are some phrases omitted in the following paragraphs. Please infer the missing parts based on contextual clues and reconstruct and show me the original content. Remember, generate only the reconstruted paragraphs and nothing else.\n---\n{context.context}"
elif not self.model_instruct_tuned:
prompt = f"The noisy paragraph is as fellow: {context.context}\n\nThere are some phrases omitted above. The complete paragraphs are: "
return prompt
def evaluate(self, evaluator: Evaluator):
# evaluate the reconstruction task
# try to use BLEU, ROUGE, METEOR, and BERTScore
# bleu, bertscore, meteor, rouge all implemented by huggingface.metrics
contexts = self.ans
reference_context = contexts.reference_context
reference_answer = contexts.answer_of_contexts[reference_context]
performance = {}
for context_type in contexts.answer_of_contexts:
if context_type == reference_context:
continue
answer = contexts.answer_of_contexts[context_type]
reference_answer_ = reference_answer[:len(answer)]
slice_ = min(len(reference_answer_), len(answer))
performance[context_type] = evaluator.evaluate(answer[:slice_], reference_answer_[:slice_])
self.ans.metrics = performance
return performance
class ContinueConversation(OriginalContextReconsutrction):
def prompt_for_the_task(self, context: ArxivContext,):
prompt = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives professional answers to the user\'s request.\n{context.context}"
return prompt