-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathdata.py
145 lines (104 loc) · 4.21 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
'''
Author : Zhengwei Li
Version : 1.0.0
'''
import cv2
import os
import random as r
import numpy as np
import torch
import torch.utils.data as data
# ============================================================================================================
def crop_patch_augment(_img, _mask, _alpha, patch):
(h, w, c) = _img.shape
scale = 0.75 + 0.5*r.random()
_img = cv2.resize(_img, (int(w*scale),int(h*scale)), interpolation=cv2.INTER_CUBIC)
_mask = cv2.resize(_mask, (int(w*scale),int(h*scale)), interpolation=cv2.INTER_NEAREST)
_alpha = cv2.resize(_alpha, (int(w*scale),int(h*scale)), interpolation=cv2.INTER_CUBIC)
(h, w, c) = _img.shape
if r.random() < 0.5:
if h>patch and w>patch:
x = r.randrange(0, (w - patch))
y = r.randrange(0, (h - patch))
_img = _img[y:y + patch, x:x + patch, :]
_mask = _mask[y:y + patch, x:x + patch, :]
_alpha = _alpha[y:y + patch, x:x + patch, :]
else:
_img = cv2.resize(_img, (patch,patch), interpolation=cv2.INTER_CUBIC)
_mask = cv2.resize(_mask, (patch,patch), interpolation=cv2.INTER_NEAREST)
_alpha = cv2.resize(_alpha, (patch,patch), interpolation=cv2.INTER_CUBIC)
else:
_img = cv2.resize(_img, (patch,patch), interpolation=cv2.INTER_CUBIC)
_mask = cv2.resize(_mask, (patch,patch), interpolation=cv2.INTER_NEAREST)
_alpha = cv2.resize(_alpha, (patch,patch), interpolation=cv2.INTER_CUBIC)
# flip
if r.random() < 0.5:
_img = cv2.flip(_img,0)
_mask = cv2.flip(_mask,0)
_alpha = cv2.flip(_alpha,0)
if r.random() < 0.5:
_img = cv2.flip(_img,1)
_mask = cv2.flip(_mask,1)
_alpha = cv2.flip(_alpha,1)
return _img, _mask, _alpha
def im_bg_augment(_img, _mask):
if r.random() < 0.2:
_img_portrait = np.multiply(_mask, _img)
_img_bg = np.multiply(1 - _mask, _img)
_img_bg[:,:,0] = np.multiply(np.random.rand()+0.2, _img_bg[:,:,0])
_img_bg[:,:,1] = np.multiply(np.random.rand()+0.2, _img_bg[:,:,1])
_img_bg[:,:,2] = np.multiply(np.random.rand()+0.2, _img_bg[:,:,2])
_img_bg[_img_bg>=1.0] = 1.0
_img_new = _img_bg + _img_portrait
else:
_img_new = _img
return _img_new
def np2Tensor(array):
ts = (2, 0, 1)
tensor = torch.FloatTensor(array.transpose(ts).astype(float))
return tensor
"""
dataset: human_matting
"""
class human_matting(data.Dataset):
def __init__(self, base_dir, imglist, patch):
super().__init__()
self._base_dir = base_dir
with open(os.path.join(self._base_dir, imglist)) as f:
self.file_list = f.readlines()
self.file_list = self.file_list
self.data_num = len(self.file_list)
self.patch = patch
print("Dataset : Ulsee coco !")
print('file number %d' % self.data_num)
def __getitem__(self, index):
_img_name, _target_name = self.getFileName(index)
_img = cv2.imread(_img_name).astype(np.float32)
# bright
if r.random() < 0.5:
if r.random() < 0.5:
_img = np.uint8(np.clip(_img + r.randrange(0, 45), 0, 255))
else:
_img = np.uint8(np.clip(_img - r.randrange(0, 45), 0, 255))
_img = (_img - (104., 112., 121.,)) / 255.0
_mask = cv2.imread(_target_name).astype(np.float32) #(0,1)
_alpha = _mask
_img = im_bg_augment(_img, _mask)
_img, _mask, _alpha = crop_patch_augment(_img, _mask, _alpha, self.patch)
_img = np2Tensor(_img)
_mask = np2Tensor(_mask)
_alpha = np2Tensor(_alpha)
_mask = _mask[0,:,:].unsqueeze_(0)
_alpha = _alpha[0,:,:].unsqueeze_(0)
sample = {'image': _img, 'mask': _mask, 'alpha': _alpha}
return sample
def __len__(self):
return self.data_num
def getFileName(self, idx):
line = self.file_list[idx]
line = line.replace(' ', '\t')
name = line.split('\t')[0]
nameIm = os.path.join(self._base_dir, name)
name = line.split('\t')[1].split('\n')[0]
nameTar = os.path.join(self._base_dir, name)
return nameIm, nameTar