-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviolin_plots.R
163 lines (118 loc) · 4.2 KB
/
violin_plots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
##############################################################################
# 18 marzo 2021
# Modificacion del script para incluir solo LDMC, SLA, Nmass y Pmass
#
# 03 noviembre 2020 Laura Giraldo
#
# Script para graficar boxplots de rasgos por especie
# el 04 marzo 2021: Editado para graficar SE (intervalo de confianza) en lugar de sd
#
#
###############################################################################
# Cargar librerias y datos
library(ggpubr)
library(ggplot2)
library(here)
library(xlsx)
library(purrr)
library(RColorBrewer)
library(purrr) # v. 0.3.2
library(tidyverse)
library(readxl)
#Cargar archivo
rasgos <- read_excel(here("Datos","Finales", "Sp_trait_values.xlsx"))
colnames(rasgos)
which(is.na(rasgos))
#View(rasgos)
# reviso un poco de las columnas
#___________________________________________________________________________
#Cargar paleta colorblind-friendly :) -de Okabe e Ito
cbPalette <- c("#D55E00", "#0072B2",
"#E69F00", "#009E73",
"#F0E442", "#56B4E9",
"#CC79A7", "#999999")
#######################################################################
#_____________________________________________________________
nrow(rasgos)
#View(rasgos)
colnames(rasgos)
response_dat<-rasgos %>%
select(SLA,LDMC,LNmass, LPmass, LeafNP)
response <- names(response_dat)
response
response = set_names(response)
response
#############
# Una funcion para que el violin plot muestre la media , y el maximo y minimo (ya no es necesaria!)
#data_summary <- function(x) {
# m <- mean(x)
#ymin <- m-(sd(x)/sqrt(length(x)))
#ymax <- m+(sd(x)/sqrt(length(x)))
# return(c(y=m,ymin=ymin,ymax=ymax))
#}
########Funcion para graficar
viol_fun = function(y)
{ggplot(rasgos, aes(x = species,
y = .data[[y]],
fill=species,
color=species))+
geom_violin(trim=TRUE, alpha=0.5, size=0.5)+
geom_jitter(position=position_jitter(0.1),
size=1, alpha=0.5)+
stat_summary(fun = "mean", geom = "point",
fill="black", color="black", size=1.5)+
geom_errorbar(stat="summary", fun.data="mean_se", # Para intervalo de confianza, multiplicar SE*1.96:
fun.args = list(mult = 1.96),
color="black", width=0.1, size=0.5)+
theme_classic()+
theme(axis.text=element_text(size=10),
legend.position = "bottom",
legend.key.size = unit(0.8,"line"),
legend.title=element_blank(),
axis.text.x=element_blank(),
axis.title.x=element_blank(),
axis.text.y = element_text(size = 8),
axis.title.y = element_text(size= 9),
legend.text= element_text (size=8),
panel.border = element_rect(colour = "black",
fill=NA))+
scale_fill_manual(values=cbPalette) +
scale_colour_manual(values=cbPalette)+
facet_grid(cols = vars(Altitude))
}
#############################################
# todos los graficos juntos
violines <- map(response,viol_fun)
# Edicion por separado de cada grafico
c <-viol_fun("SLA")+
ylab(bquote('SLA'~(cm^2/g)))+
theme(legend.position = "none")
d <- viol_fun("LDMC")+
ylab(bquote('LDMC'~(mg/g)))+
theme(legend.position = "none")
e <- viol_fun("LNmass")+
ylab(bquote('LNmass'~(mg/g)))+
theme(legend.position = "none")
f <- viol_fun("LPmass")+
ylab(bquote('LPmass'~(mg/g)))+
ylim(0.1,1.7)+
theme(legend.position = "none")
f
g <- viol_fun("LeafNP")+
ylab('Leaf N:P')+theme(legend.position="none")
##### Layout
figura<-ggarrange(c,d,e,f,g,
labels = c("A", "B","C","D","E"),
ncol = 2, nrow = 3,
hjust = c(-2),
vjust = c(2),
font.label = list(size = 10),
common.legend = TRUE, legend="bottom")
figura
ggsave("AppendixS3.pdf",
plot= figura,
path = "Figuras",
device= "pdf",
height=6,
width=5,
units= "in", dpi=600)