###https://stackoverflow.com/questions/22422687/r-survival-package-plotting-log-logsurvival-against-logtime
y2016deaths <- read.csv("death/yearsdeaths.cvs")
y2016deaths$exposure <- ifelse(y2016deaths$cid10=="I63",0,
ifelse(y2016deaths$cid10=="I60",1,
ifelse(y2016deaths$cid10=="I61",2,
ifelse(y2016deaths$cid10=="I64",3,NA))))
y2016deaths$exposure <- factor(y2016deaths$exposure, levels = c(0,1,2,3), labels = c("I63", "I60", "I61","I64"))
sum(is.na(y2016deaths$exposure)) #0
## [1] 0
y2016deaths$survivalobj0 <- with(y2016deaths,Surv(los,condicion=="Death"))
summary(y2016deaths$survivalobj0)
## time status
## Min. : 1.000 Min. :0.0000
## 1st Qu.: 4.000 1st Qu.:0.0000
## Median : 7.000 Median :0.0000
## Mean : 9.436 Mean :0.1153
## 3rd Qu.:12.000 3rd Qu.:0.0000
## Max. :59.000 Max. :1.0000
cox1 <- coxph(survivalobj0 ~ exposure+strata(regions,level),data=y2016deaths)
summary(cox1)
## Call:
## coxph(formula = survivalobj0 ~ exposure + strata(regions, level),
## data = y2016deaths)
##
## n= 6565, number of events= 757
## (1 observation deleted due to missingness)
##
## coef exp(coef) se(coef) z Pr(>|z|)
## exposureI60 0.9156 2.4984 0.1255 7.295 2.98e-13 ***
## exposureI61 0.6486 1.9128 0.1167 5.558 2.72e-08 ***
## exposureI64 0.3573 1.4294 0.1131 3.158 0.00159 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## exposureI60 2.498 0.4003 1.954 3.195
## exposureI61 1.913 0.5228 1.522 2.404
## exposureI64 1.429 0.6996 1.145 1.784
##
## Concordance= 0.603 (se = 0.014 )
## Likelihood ratio test= 63.15 on 3 df, p=1e-13
## Wald test = 62.59 on 3 df, p=2e-13
## Score (logrank) test = 64.83 on 3 df, p=5e-14
cox2 <- coxph(survivalobj0 ~ exposure+sexo+ edad+ strata(regions, level),data=y2016deaths)
summary(cox2)
## Call:
## coxph(formula = survivalobj0 ~ exposure + sexo + edad + strata(regions,
## level), data = y2016deaths)
##
## n= 6565, number of events= 757
## (1 observation deleted due to missingness)
##
## coef exp(coef) se(coef) z Pr(>|z|)
## exposureI60 0.964795 2.624249 0.128007 7.537 4.81e-14 ***
## exposureI61 0.683784 1.981361 0.116839 5.852 4.85e-09 ***
## exposureI64 0.337851 1.401932 0.113019 2.989 0.00280 **
## sexoWomen 0.195240 1.215603 0.074470 2.622 0.00875 **
## edad 0.011660 1.011729 0.002794 4.173 3.00e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## exposureI60 2.624 0.3811 2.042 3.373
## exposureI61 1.981 0.5047 1.576 2.491
## exposureI64 1.402 0.7133 1.123 1.750
## sexoWomen 1.216 0.8226 1.051 1.407
## edad 1.012 0.9884 1.006 1.017
##
## Concordance= 0.621 (se = 0.014 )
## Likelihood ratio test= 90.27 on 5 df, p=<2e-16
## Wald test = 89.32 on 5 df, p=<2e-16
## Score (logrank) test = 91.64 on 5 df, p=<2e-16
test.ph1 <- cox.zph(cox1)
test.ph2 <- cox.zph(cox2)
test.ph1
## chisq df p
## exposure 13.4 3 0.0038
## GLOBAL 13.4 3 0.0038
test.ph2
## chisq df p
## exposure 14.18 3 0.0027
## sexo 2.12 1 0.1454
## edad 2.66 1 0.1031
## GLOBAL 17.13 5 0.0043
ggcoxzph(test.ph1)
ggcoxzph(test.ph2)