-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurvival.R
executable file
·134 lines (115 loc) · 4.56 KB
/
survival.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
library(plyr)
library(dplyr)
library(foreign)
library(readstata13)
library(ggplot2)
library(gridExtra)
library(gtools)
library(Hmisc)
library(magrittr)
library(survival)
library(ggplot2)
library(coxme)
library(tidyr)
library(lattice)
library(broom)
library(survival)
library(survminer)
library(lubridate)
setwd("~/Documentos/R/Stroke/death/")
y2016deaths <- read.csv("yearsdeaths.cvs")
levels(as.factor(y2016deaths$cid10)) #4
str(y2016deaths)
table(y2016deaths$cid10,y2016deaths$agecat,y2016deaths$condicion)
y2016deaths$edad <- as.numeric(y2016deaths$edad)
summarise(y2016deaths$edad)
tapply(edad,condicion,sd)
sd(edad)
y2016deaths$agecat <- ifelse(y2016deaths$edad<55, 0, ifelse(y2016deaths$edad>=55 & y2016deaths$edad<75, 1, ifelse(y2016deaths$edad>=75, 2, NA))) %>%
factor(y2016deaths$agecat, levels = c(0,1,2), labels = c("<55", "55-74", "75+"))
###GENERATE EXPOSURE
y2016deaths$exposure <- ifelse(y2016deaths$cid10=="I63",0,
ifelse(y2016deaths$cid10=="I60",1,
ifelse(y2016deaths$cid10=="I61",2,
ifelse(y2016deaths$cid10=="I64",3,NA))))
y2016deaths$exposure <- factor(y2016deaths$exposure, levels = c(0,1,2,3), labels = c("I63", "I60", "I61","I64"))
sum(is.na(y2016deaths$exposure)) #0
y2016deaths$edad <- as.numeric(y2016deaths$edad)
str(y2016deaths$exposure)
# subarachnoid haemorrhage (ICD-10 code I60),
#intra-cerebral haemorrhage (ICD-10 code I61),
#cerebral infarction (ICD-10 code I63)
#stroke not specified as haemorrhage or infarction (ICD-10 code I64).
##GENERATE SURVIVAL OBJECT
y2016deaths$survivalobj0 <- with(y2016deaths,Surv(los,condicion=="Death"))
summary(y2016deaths$survivalobj0)
###CHECK PROPORTIONAL HAZARD ASSUMPTION
##(p<0.05 indicates a violation of the assumption) IN CRUDE
prop.res.cox1<-cox.zph(coxph(survivalobj0 ~ exposure+strata(regions, level),data=y2016deaths))
prop.res.cox1 #VIOLATION OF THE ASSUMPTION
#ADJUSTED MODEL
prop.res.cox2 <- cox.zph(coxph(survivalobj0 ~ exposure+sexo+agecat+strata(regions, level),data=y2016deaths))
prop.res.cox2 #VIOLATION OF THE ASSUMPTION
########################
###### WEIBULL MODEL####
########################
library(eha)
#Model not adjusted
wb1 <- weibreg(survivalobj0 ~ exposure+strata(regions, level),
data = y2016deaths) #strata
#I60
#exp(0.850 + 1.96*0.125)
#exp(0.850 -1.96*0.125)
#I61
#exp(0.636 +1.96*0.117)
#exp(0.636 -1.96*0.117)
#I64
#exp(0.393 +1.96*0.113)
#exp(0.393 -1.96*0.113)
#y2016deaths$sexo <- as.numeric(y2016deaths$sexo)
#numeric covariables (edad, sex)
#Adjusted model
ehawb2 <- weibreg(survivalobj0 ~ exposure+sexo+edad+strata(regions,level),
data = y2016deaths) #ajusted~strata
#I60
#exp(0.895 + 1.96*0.127)
#exp(0.895 -1.96*0.127)
#I61
#exp(0.670 +1.96*0.117)
#exp(0.670 -1.96*0.117)
#I64
#exp(0.374 +1.96*0.113)
#exp(0.374 -1.96*0.113)
#################################################################################
#Creating survival plot
install.packages('survminer')
library(survminer)
library(ggpubr)
library(survival)
y2016deaths$cid10 <- factor(y2016deaths$cid10, levels = c("I60","I61","I63","I64"), labels = c("Subarachnoid Hemorrhage (I60)", "Intra-cerebral Hemorrhage (I61)", "Cerebral Infarction (I63)", "Stroke not specified (I64)"))
names(y2016deaths)[names(y2016deaths) == "cid10"] <- 'ICD-10'
losfit <- survfit(Surv(y2016deaths$los, y2016deaths$condicion=="Death") ~ y2016deaths$'ICD-10',
data = y2016deaths)
# Visualize with survminer
ggsurvplot(losfit, data = y2016deaths, main = "Survival curve", pval = TRUE, size = 0.5, pval.coord =c(2,0),
submain = "Based on Kaplan-Meier estimates", legend = c(0.2, 0.2),
font.submain = 18,
#font.x = 16,
#font.y = 16,
#font.tickslab = 16,
font.legend = 13,
#font.caption = 16,
#risk.table.fontsize = 6,
#risk.table.height = 0.45,
#font.family = 14,
#fontsize =6,
risk.table = TRUE, xlim = c(0,30), ylim =c(0.6,1),xlab = "Time in days",
legend.labs = c("Cerebral Infarction (I63) (n=122)","Intra-cerebral Hemorrhage (I61) (n=193)","Stroke not specified as hemorrhage or infarction (I64) (n=297)","Subarachnoid Hemorrhage (I60) (n=145)"),
break.time.by = 5, risk.table.y.text.col = T, risk.table.y.text = FALSE, conf.int = TRUE,conf.int.style=c("ribbon"), ggtheme = theme_bw())
#comment
library(survival)
library(MASS)
data(gehan)
gehansurv=Surv(gehan$time, gehan$cens)
plot(survfit(gehansurv ~ gehan$treat), col=c("black", "red"), fun="cloglog")
ggcoxzph(test.ph1)