forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributed.sh
54 lines (44 loc) · 2.13 KB
/
distributed.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/bin/bash
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script launches a multi-process version of Swivel on a single machine.
set -e
# A comma-separated list of parameter server processes.
PS_HOSTS="localhost:4000"
# A comma-separated list of worker processes.
WORKER_HOSTS="localhost:5000,localhost:5001,localhost:5002,localhost:5003"
# Where the Swivel training data is located. All processes must be able to read
# from this directory, so it ought to be a network filesystem if you're running
# on multiple servers.
INPUT_BASE_PATH="${HOME}/tmp/swivel/in"
# Where the output and working directory is located.
OUTPUT_BASE_PATH="${HOME}/tmp/swivel/out"
# Location of evaluation data, if you want to observe evaluation while training.
EVAL_BASE_PATH="${HOME}/tmp/swivel/eval"
ARGS="--ps_hosts ${PS_HOSTS}
--worker_hosts ${WORKER_HOSTS}
--input_base_path ${INPUT_BASE_PATH}
--output_base_path ${OUTPUT_BASE_PATH}
--eval_base_path ${EVAL_BASE_PATH}"
# This configuration is for a two-GPU machine. It starts four worker
# processes, two for each GPU.
python swivel.py --job_name ps --task_index 0 ${ARGS} >& /tmp/ps.0 &
python swivel.py --job_name worker --task_index 0 --gpu_device 0 ${ARGS} >& /tmp/worker.0 &
python swivel.py --job_name worker --task_index 1 --gpu_device 1 ${ARGS} >& /tmp/worker.1 &
python swivel.py --job_name worker --task_index 2 --gpu_device 0 ${ARGS} >& /tmp/worker.2 &
python swivel.py --job_name worker --task_index 3 --gpu_device 1 ${ARGS} >& /tmp/worker.3 &
# Perhaps there is a more clever way to clean up the parameter server once all
# the workers are done.
wait %2 %3 %4 %5
kill %1