-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
245 lines (190 loc) · 9.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import torch.nn as nn
from scipy.stats import truncnorm
import math
expansion = 1
def Conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def Conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
class Basic2d(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer=None, kernel_size=3, padding=1):
super().__init__()
if norm_layer:
conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=1, padding=padding, bias=False)
else:
conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=1, padding=padding, bias=True)
self.conv = nn.Sequential(conv, )
if norm_layer:
self.conv.add_module('bn', norm_layer(out_channels))
self.conv.add_module('relu', nn.ReLU(inplace=True))
def forward(self, x):
out = self.conv(x)
return out
class Basic2dTrans(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer=None):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv = nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3,
stride=2, padding=1, output_padding=1, bias=False)
self.bn = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
return out
class FastGuide(nn.Module):
def __init__(self, input_planes, norm_layer=None):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.expansion_ratio = 3
self.conv1 = Basic2d(input_planes, input_planes, None)
self.weight_expansion = Basic2d(input_planes, input_planes * self.expansion_ratio, norm_layer, kernel_size=1, padding=0)
self.conv2 = Basic2d(input_planes, input_planes, norm_layer, kernel_size=1, padding=0)
self.conv3 = Basic2d(input_planes, input_planes)
def forward(self, input, weight):
weight = self.conv1(weight)
weight = self.weight_expansion(weight)
kernels = torch.chunk(weight, self.expansion_ratio, 1)
splits = []
for i in range(self.expansion_ratio):
splits.append(input*kernels[i])
out = sum(splits)
out = self.conv2(out)
avg_out = torch.mean(weight, dim=1, keepdim=True)
out = self.conv3(out * avg_out)
return out
class BasicBlock(nn.Module):
__constants__ = ['downsample']
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None, act=True):
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv1 = Conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = Conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
self.act = act
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
if self.act:
out = self.relu(out)
return out
class CHNet(nn.Module):
def __init__(self, block=BasicBlock, bc=16, img_layers=[2, 2, 2, 2, 2],
depth_layers=[2, 2, 2, 2, 2], norm_layer=nn.BatchNorm2d):
super().__init__()
self._norm_layer = norm_layer
self.conv_img = Basic2d(3, bc * 2, norm_layer=norm_layer, kernel_size=5, padding=2)
in_channels = bc * 2
self.inplanes = in_channels
self.layer1_img = self._make_layer(block, in_channels * 2, img_layers[0], stride=2)
self.guide1 = FastGuide(in_channels * 2, norm_layer)
self.inplanes = in_channels * 2 * expansion
self.layer2_img = self._make_layer(block, in_channels * 4, img_layers[1], stride=2)
self.guide2 = FastGuide(in_channels * 4, norm_layer)
self.inplanes = in_channels * 4 * expansion
self.layer3_img = self._make_layer(block, in_channels * 8, img_layers[2], stride=2)
self.guide3 = FastGuide(in_channels * 8, norm_layer)
self.inplanes = in_channels * 8 * expansion
self.layer4_img = self._make_layer(block, in_channels * 8, img_layers[3], stride=2)
self.guide4 = FastGuide(in_channels * 8, norm_layer)
self.conv_lidar = Basic2d(1, bc * 2, norm_layer=None, kernel_size=5, padding=2)
self.inplanes = in_channels
self.layer1_lidar = self._make_layer(block, in_channels * 2, depth_layers[0], stride=2)
self.inplanes = in_channels * 2 * expansion
self.layer2_lidar = self._make_layer(block, in_channels * 4, depth_layers[1], stride=2)
self.inplanes = in_channels * 4 * expansion
self.layer3_lidar = self._make_layer(block, in_channels * 8, depth_layers[2], stride=2)
self.inplanes = in_channels * 8 * expansion
self.layer4_lidar = self._make_layer(block, in_channels * 8, depth_layers[3], stride=2)
self.layer1d = Basic2dTrans(in_channels * 2, in_channels, norm_layer)
self.layer2d = Basic2dTrans(in_channels * 4, in_channels * 2, norm_layer)
self.layer3d = Basic2dTrans(in_channels * 8, in_channels * 4, norm_layer)
self.layer4d = Basic2dTrans(in_channels * 8, in_channels * 8, norm_layer)
self.conv_ob = nn.Sequential(block(bc * 2, bc * 2, norm_layer=norm_layer, act=False),
nn.Conv2d(bc * 2, 1, kernel_size=3, stride=1, padding=1))
self.conv_unob = nn.Sequential(block(bc * 2, bc * 2, norm_layer=norm_layer, act=False),
nn.Conv2d(bc * 2, 1, kernel_size=3, stride=1, padding=1))
self.ref = block(bc * 2, bc * 2, norm_layer=norm_layer, act=False)
self._initialize_weights()
def forward(self, x):
img = x['rgb']
lidar = x['d']
lidar_mask = (lidar > 0).detach()
c0_img = self.conv_img(img)
c0_lidar = self.conv_lidar(lidar)
c1_img = self.layer1_img(c0_img)
c1_lidar = self.layer1_lidar(c0_lidar)
c1_lidar = self.guide1(c1_lidar, c1_img)
c2_img = self.layer2_img(c1_img)
c2_lidar = self.layer2_lidar(c1_lidar)
c2_lidar = self.guide2(c2_lidar, c2_img)
c3_img = self.layer3_img(c2_img)
c3_lidar = self.layer3_lidar(c2_lidar)
c3_lidar = self.guide3(c3_lidar, c3_img)
c4_img = self.layer4_img(c3_img)
c4_lidar = self.layer4_lidar(c3_lidar)
c4_lidar = self.guide4(c4_lidar, c4_img)
de2 = self.layer4d(c4_lidar)
de2 = de2 + c3_lidar
de3 = self.layer3d(de2)
de3 = de3 + c2_lidar
de4 = self.layer2d(de3)
de4 = de4 + c1_lidar
de5 = self.layer1d(de4)
de5 = de5 + c0_lidar
output = self.ref(de5)
output_ob = self.conv_ob(output)
output_unob = self.conv_unob(output)
output = lidar_mask * output_ob + ~lidar_mask * output_unob
return output, output_ob, output_unob
def _make_layer(self, block, planes, blocks, stride=1):
norm_layer = self._norm_layer
downsample = None
if stride != 1 or self.inplanes != planes * expansion:
downsample = nn.Sequential(
Conv1x1(self.inplanes, planes * expansion, stride),
norm_layer(planes * expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, norm_layer))
self.inplanes = planes * expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, norm_layer=norm_layer))
return nn.Sequential(*layers)
def _initialize_weights(self):
def truncated_normal_(num, mean=0., std=1.):
lower = -2 * std
upper = 2 * std
X = truncnorm((lower - mean) / std, (upper - mean) / std, loc=mean, scale=std)
samples = X.rvs(num)
output = torch.from_numpy(samples)
return output
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
data = truncated_normal_(m.weight.nelement(), mean=0, std=math.sqrt(1.3 * 2. / n))
data = data.type_as(m.weight.data)
m.weight.data = data.view_as(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)