-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvis_utils.py
141 lines (123 loc) · 4.57 KB
/
vis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
if not ("DISPLAY" in os.environ):
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import cv2
cmap = plt.cm.jet
cmap2 = plt.cm.nipy_spectral
def validcrop(img):
ratio = 256/1216
h = img.size()[2]
w = img.size()[3]
return img[:, :, h-int(ratio*w):, :]
def depth_colorize(depth):
depth = (depth - np.min(depth)) / (np.max(depth) - np.min(depth))
depth = 255 * cmap(depth)[:, :, :3] # H, W, C
return depth.astype('uint8')
def feature_colorize(feature):
feature = (feature - np.min(feature)) / ((np.max(feature) - np.min(feature)))
feature = 255 * cmap2(feature)[:, :, :3]
return feature.astype('uint8')
def mask_vis(mask):
mask = (mask - np.min(mask)) / (np.max(mask) - np.min(mask))
mask = 255 * mask
return mask.astype('uint8')
def merge_into_row(ele, pred, predrgb=None, predg=None, extra=None, extra2=None, extrargb=None):
def preprocess_depth(x):
y = np.squeeze(x.data.cpu().numpy())
return depth_colorize(y)
# if is gray, transforms to rgb
img_list = []
if 'rgb' in ele:
rgb = np.squeeze(ele['rgb'][0, ...].data.cpu().numpy())
rgb = np.transpose(rgb, (1, 2, 0))
img_list.append(rgb)
elif 'g' in ele:
g = np.squeeze(ele['g'][0, ...].data.cpu().numpy())
g = np.array(Image.fromarray(g).convert('RGB'))
img_list.append(g)
if 'd' in ele:
img_list.append(preprocess_depth(ele['d'][0, ...]))
img_list.append(preprocess_depth(pred[0, ...]))
if extrargb is not None:
img_list.append(preprocess_depth(extrargb[0, ...]))
if predrgb is not None:
predrgb = np.squeeze(ele['rgb'][0, ...].data.cpu().numpy())
predrgb = np.transpose(predrgb, (1, 2, 0))
#predrgb = predrgb.astype('uint8')
img_list.append(predrgb)
if predg is not None:
predg = np.squeeze(predg[0, ...].data.cpu().numpy())
predg = mask_vis(predg)
predg = np.array(Image.fromarray(predg).convert('RGB'))
#predg = predg.astype('uint8')
img_list.append(predg)
if extra is not None:
extra = np.squeeze(extra[0, ...].data.cpu().numpy())
extra = mask_vis(extra)
extra = np.array(Image.fromarray(extra).convert('RGB'))
img_list.append(extra)
if extra2 is not None:
extra2 = np.squeeze(extra2[0, ...].data.cpu().numpy())
extra2 = mask_vis(extra2)
extra2 = np.array(Image.fromarray(extra2).convert('RGB'))
img_list.append(extra2)
if 'gt' in ele:
img_list.append(preprocess_depth(ele['gt'][0, ...]))
img_merge = np.hstack(img_list)
return img_merge.astype('uint8')
def add_row(img_merge, row):
return np.vstack([img_merge, row])
def save_image(img_merge, filename):
image_to_write = cv2.cvtColor(img_merge, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, image_to_write)
def save_image_torch(rgb, filename):
#torch2numpy
rgb = validcrop(rgb)
rgb = np.squeeze(rgb[0, ...].data.cpu().numpy())
#print(rgb.size())
rgb = np.transpose(rgb, (1, 2, 0))
rgb = rgb.astype('uint8')
image_to_write = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, image_to_write)
def save_depth_as_uint16png(img, filename):
#from tensor
img = np.squeeze(img.data.cpu().numpy())
img = (img * 256).astype('uint16')
cv2.imwrite(filename, img)
def save_depth_as_uint16png_upload(img, filename):
#from tensor
img = np.squeeze(img.data.cpu().numpy())
img = (img * 256.0).astype('uint16')
img_buffer = img.tobytes()
imgsave = Image.new("I", img.T.shape)
imgsave.frombytes(img_buffer, 'raw', "I;16")
imgsave.save(filename)
def save_depth_as_uint8colored(img, filename):
#from tensor
img = validcrop(img)
img = np.squeeze(img.data.cpu().numpy())
img = depth_colorize(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, img)
def save_mask_as_uint8colored(img, filename, colored=True, normalized=True):
img = validcrop(img)
img = np.squeeze(img.data.cpu().numpy())
if(normalized==False):
img = (img - np.min(img)) / (np.max(img) - np.min(img))
if(colored==True):
img = 255 * cmap(img)[:, :, :3]
else:
img = 255 * img
img = img.astype('uint8')
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, img)
def save_feature_as_uint8colored(img, filename):
img = validcrop(img)
img = np.squeeze(img.data.cpu().numpy())
img = feature_colorize(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, img)