-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathhard_disc.py
executable file
·379 lines (300 loc) · 12.8 KB
/
hard_disc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python2
# Copyright (c) 2016-2018 Lester Hedges <[email protected]>
#
# This software is provided 'as-is', without any express or implied
# warranty. In no event will the authors be held liable for any damages
# arising from the use of this software.
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
#
# 1. The origin of this software must not be misrepresented; you must not
# claim that you wrote the original software. If you use this software
# in a product, an acknowledgment in the product documentation would be
# appreciated but is not required.
#
# 2. Altered source versions must be plainly marked as such, and must not be
# misrepresented as being the original software.
#
# 3. This notice may not be removed or altered from any source distribution.
"""An example showing how to use the AABB.cc Python wrapper."""
# Note:
# SWIG allows us direct access to STL vectors in python. See aabb.i for
# full details of the mappings.
#
# As an example, you can create a STL vector containing 10 doubles
# as follows:
#
# doubleVector = aabb.VectorDouble(10)
#
# You can then access most of the usual member functions, e.g. to
# print the size of the vector:
#
# print doubleVector.size()
from __future__ import print_function
import aabb
import math
import random
# Test whether two discs overlap.
def overlaps(position1, position2, periodicity, boxSize, cutOff):
# Compute separation vector.
separation = [0] * 2
separation[0] = position1[0] - position2[0]
separation[1] = position1[1] - position2[1]
# Find minimum image separation.
minimumImage(separation, periodicity, boxSize)
# Squared distance between objects.
rSqd = separation[0]*separation[0] + separation[1]*separation[1]
if rSqd < cutOff:
return True
else:
return False
# Compute the minimum image separation vector between disc centres.
def minimumImage(separation, periodicity, boxSize):
for i in range(0, 2):
if separation[i] < -0.5*boxSize[i]:
separation[i] += periodicity[i]*boxSize[i]
elif separation[i] >= 0.5*boxSize[i]:
separation[i] -= periodicity[i]*boxSize[i]
# Apply periodic boundary conditions.
def periodicBoundaries(position, periodicity, boxSize):
for i in range(0, 2):
if position[i] < 0:
position[i] += periodicity[i]*boxSize[i]
elif position[i] >= boxSize[i]:
position[i] -= periodicity[i]*boxSize[i]
# Print current configuration to VMD trajectory file.
def printVMD(fileName, positionsSmall, positionsLarge):
with open(fileName, 'a') as trajectoryFile:
trajectoryFile.write('%lu\n' % (len(positionsSmall) + len(positionsLarge)))
trajectoryFile.write('\n')
for i in range(0, len(positionsSmall)):
trajectoryFile.write('0 %lf %lf 0\n' % (positionsSmall[i][0], positionsSmall[i][1]))
for i in range(0, len(positionsLarge)):
trajectoryFile.write('1 %lf %lf 0\n' % (positionsLarge[i][0], positionsLarge[i][1]))
#############################################################
# Set parameters, initialise variables and objects. #
#############################################################
nSweeps = 100000 # The number of Monte Carlo sweeps.
sampleInterval = 100 # The number of sweeps per sample.
nSmall = 1000 # The number of small particles.
nLarge = 100 # The number of large particles.
diameterSmall = 1 # The diameter of the small particles.
diameterLarge = 10 # The diameter of the large particles.
density = 0.1 # The system density
maxDisp = 0.1 # Maximum trial displacement (in units of diameter).
# Total particles.
nParticles = nSmall + nLarge
# Number of samples.
nSamples = math.floor(nSweeps / sampleInterval)
# Particle radii.
radiusSmall = 0.5 * diameterSmall
radiusLarge = 0.5 * diameterLarge
# Output formatting flag.
format = int(math.floor(math.log10(nSamples)))
# Set the periodicity of the simulation box.
periodicity = aabb.VectorBool(2)
periodicity[0] = True
periodicity[1] = True
# Work out base length of the simulation box.
baseLength = math.pow((math.pi*(nSmall*diameterSmall + nLarge*diameterLarge))/(4*density), 0.5)
boxSize = aabb.VectorDouble(2)
boxSize[0] = baseLength
boxSize[1] = baseLength
# Seed the random number generator.
random.seed()
# Initialise the AABB trees.
treeSmall = aabb.Tree(2, maxDisp, periodicity, boxSize, nSmall)
treeLarge = aabb.Tree(2, maxDisp, periodicity, boxSize, nLarge)
# Initialise particle position vectors.
positionsSmall = [[0 for i in range(2)] for j in range(nSmall)]
positionsLarge = [[0 for i in range(2)] for j in range(nLarge)]
#############################################################
# Generate the initial AABB trees. #
#############################################################
# First the large particles.
print('Inserting large particles into AABB tree ...')
# Cut-off distance.
cutOff = 2 * radiusLarge
cutOff *= cutOff
# Initialise the position vector.
position = aabb.VectorDouble(2)
# Initialise bounds vectors.
lowerBound = aabb.VectorDouble(2)
upperBound = aabb.VectorDouble(2)
for i in range(0, nLarge):
# Insert the first particle directly.
if i == 0:
# Generate a random particle position.
position[0] = boxSize[0]*random.random()
position[1] = boxSize[1]*random.random()
# Check for overlaps.
else:
# Initialise the overlap flag.
isOverlap = True
while isOverlap:
# Generate a random particle position.
position[0] = boxSize[0]*random.random()
position[1] = boxSize[1]*random.random()
# Compute the lower and upper AABB bounds.
lowerBound[0] = position[0] - radiusLarge
lowerBound[1] = position[1] - radiusLarge
upperBound[0] = position[0] + radiusLarge
upperBound[1] = position[1] + radiusLarge
# Generate the AABB.
AABB = aabb.AABB(lowerBound, upperBound)
# Query AABB overlaps.
particles = treeLarge.query(AABB)
# Flag as no overlap (yet).
isOverlap = False
# Test overlap.
for j in range(0, len(particles)):
if overlaps(position, positionsLarge[particles[j]], periodicity, boxSize, cutOff):
isOverlap = True
break
# Insert the particle into the tree.
treeLarge.insertParticle(i, position, radiusLarge)
# Store the position.
positionsLarge[i] = [position[0], position[1]]
print('Tree generated!')
# Now fill the gaps with the small particles.
print('\nInserting small particles into AABB tree ...')
for i in range(0, nSmall):
# Initialise the overlap flag.
isOverlap = True
# Keep trying until there is no overlap.
while isOverlap:
# Set the cut-off.
cutOff = radiusSmall + radiusLarge
cutOff *= cutOff
# Generate a random particle position.
position[0] = boxSize[0]*random.random()
position[1] = boxSize[1]*random.random()
# Compute the lower and upper AABB bounds.
lowerBound[0] = position[0] - radiusSmall
lowerBound[1] = position[1] - radiusSmall
upperBound[0] = position[0] + radiusSmall
upperBound[1] = position[1] + radiusSmall
# Generate the AABB.
AABB = aabb.AABB(lowerBound, upperBound)
# First query AABB overlaps with the large particles.
particles = treeLarge.query(AABB)
# Flag as no overlap (yet).
isOverlap = False
# Test overlap.
for j in range(0, len(particles)):
if overlaps(position, positionsLarge[particles[j]], periodicity, boxSize, cutOff):
isOverlap = True
break
# Advance to next overlap test.
if not isOverlap:
# Set the cut-off.
cutOff = radiusSmall + radiusSmall
cutOff *= cutOff
# No need to test the first particle.
if i > 0:
# Now query AABB overlaps with other small particles.
particles = treeSmall.query(AABB)
# Test overlap.
for j in range(0, len(particles)):
if overlaps(position, positionsSmall[particles[j]], periodicity, boxSize, cutOff):
isOverlap = True
break
# Insert the particle into the tree.
treeSmall.insertParticle(i, position, radiusSmall)
# Store the position.
positionsSmall[i] = [position[0], position[1]]
print('Tree generated!')
#############################################################
# Perform the dynamics, updating the tree as we go. #
#############################################################
# Clear the trajectory file.
open('trajectory.xyz', 'w').close()
print('\nRunning dynamics ...')
sampleFlag = 0
nSampled = 0
# Initialise the displacement vector.
displacement = [0] * 2
for i in range(0, nSweeps):
for j in range(0, nParticles):
# Choose a random particle.
particle = random.randint(0, nParticles-1)
# Determine the particle type
if particle < nSmall:
particleType = 0
radius = radiusSmall
displacement[0] = maxDisp*diameterSmall*(2*random.random() - 1)
displacement[1] = maxDisp*diameterSmall*(2*random.random() - 1)
position[0] = positionsSmall[particle][0] + displacement[0]
position[1] = positionsSmall[particle][1] + displacement[1]
else:
particleType = 1
particle -= nSmall
radius = radiusLarge
displacement[0] = maxDisp*diameterLarge*(2*random.random() - 1)
displacement[1] = maxDisp*diameterLarge*(2*random.random() - 1)
position[0] = positionsLarge[particle][0] + displacement[0]
position[1] = positionsLarge[particle][1] + displacement[1]
# Apply periodic boundary conditions.
periodicBoundaries(position, periodicity, boxSize)
# Compute the AABB bounds.
lowerBound[0] = position[0] - radius
lowerBound[1] = position[1] - radius
upperBound[0] = position[0] + radius
upperBound[1] = position[1] + radius
# Generate the AABB.
AABB = aabb.AABB(lowerBound, upperBound)
# Query AABB overlaps with small particles.
particles = treeSmall.query(AABB)
# Flag as no overlap (yet).
isOverlap = False
# Set the cut-off
cutOff = radius + radiusSmall
cutOff *= cutOff
# Test overlap.
for k in range(0, len(particles)):
# Don't test self overlap.
if particleType == 1 or particles[k] != particle:
if overlaps(position, positionsSmall[particles[k]], periodicity, boxSize, cutOff):
isOverlap = True
break
# Advance to next overlap test.
if not isOverlap:
# Now query AABB overlaps with the large particles.
particles = treeLarge.query(AABB)
# Set the cut-off.
cutOff = radius + radiusLarge
cutOff *= cutOff
# Test overlap.
for k in range(0, len(particles)):
# Don't test self overlap.
if particleType == 0 or particles[k] != particle:
if overlaps(position, positionsLarge[particles[k]], periodicity, boxSize, cutOff):
isOverlap = True
break
# Accept the move.
if not isOverlap:
# Update the position and AABB tree.
if particleType == 0:
positionsSmall[particle] = [position[0], position[1]]
treeSmall.updateParticle(particle, lowerBound, upperBound)
else:
positionsLarge[particle] = [position[0], position[1]]
treeLarge.updateParticle(particle, lowerBound, upperBound)
sampleFlag += 1
# Print info to screen and append trajectory file.
if sampleFlag == sampleInterval:
sampleFlag = 0
nSampled += 1
printVMD('trajectory.xyz', positionsSmall, positionsLarge)
if format == 1:
print('Saved configuration %2d of %2d' % (nSampled, nSamples))
elif format == 2:
print('Saved configuration %3d of %3d' % (nSampled, nSamples))
elif format == 3:
print('Saved configuration %4d of %4d' % (nSampled, nSamples))
elif format == 4:
print('Saved configuration %5d of %5d' % (nSampled, nSamples))
elif format == 5:
print('Saved configuration %6d of %6d' % (nSampled, nSamples))
print('Done!')