-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathtrain.py
executable file
·282 lines (205 loc) · 7.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python
# PYTHON_ARGCOMPLETE_OK
"""Training for the Copy Task in Neural Turing Machines."""
import argparse
import json
import logging
import time
import random
import re
import sys
import attr
import argcomplete
import torch
import numpy as np
LOGGER = logging.getLogger(__name__)
from tasks.copytask import CopyTaskModelTraining, CopyTaskParams
from tasks.repeatcopytask import RepeatCopyTaskModelTraining, RepeatCopyTaskParams
TASKS = {
'copy': (CopyTaskModelTraining, CopyTaskParams),
'repeat-copy': (RepeatCopyTaskModelTraining, RepeatCopyTaskParams)
}
# Default values for program arguments
RANDOM_SEED = 1000
REPORT_INTERVAL = 200
CHECKPOINT_INTERVAL = 1000
def get_ms():
"""Returns the current time in miliseconds."""
return time.time() * 1000
def init_seed(seed=None):
"""Seed the RNGs for predicatability/reproduction purposes."""
if seed is None:
seed = int(get_ms() // 1000)
LOGGER.info("Using seed=%d", seed)
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
def progress_clean():
"""Clean the progress bar."""
print("\r{}".format(" " * 80), end='\r')
def progress_bar(batch_num, report_interval, last_loss):
"""Prints the progress until the next report."""
progress = (((batch_num-1) % report_interval) + 1) / report_interval
fill = int(progress * 40)
print("\r[{}{}]: {} (Loss: {:.4f})".format(
"=" * fill, " " * (40 - fill), batch_num, last_loss), end='')
def save_checkpoint(net, name, args, batch_num, losses, costs, seq_lengths):
progress_clean()
basename = "{}/{}-{}-batch-{}".format(args.checkpoint_path, name, args.seed, batch_num)
model_fname = basename + ".model"
LOGGER.info("Saving model checkpoint to: '%s'", model_fname)
torch.save(net.state_dict(), model_fname)
# Save the training history
train_fname = basename + ".json"
LOGGER.info("Saving model training history to '%s'", train_fname)
content = {
"loss": losses,
"cost": costs,
"seq_lengths": seq_lengths
}
open(train_fname, 'wt').write(json.dumps(content))
def clip_grads(net):
"""Gradient clipping to the range [10, 10]."""
parameters = list(filter(lambda p: p.grad is not None, net.parameters()))
for p in parameters:
p.grad.data.clamp_(-10, 10)
def train_batch(net, criterion, optimizer, X, Y):
"""Trains a single batch."""
optimizer.zero_grad()
inp_seq_len = X.size(0)
outp_seq_len, batch_size, _ = Y.size()
# New sequence
net.init_sequence(batch_size)
# Feed the sequence + delimiter
for i in range(inp_seq_len):
net(X[i])
# Read the output (no input given)
y_out = torch.zeros(Y.size())
for i in range(outp_seq_len):
y_out[i], _ = net()
loss = criterion(y_out, Y)
loss.backward()
clip_grads(net)
optimizer.step()
y_out_binarized = y_out.clone().data
y_out_binarized.apply_(lambda x: 0 if x < 0.5 else 1)
# The cost is the number of error bits per sequence
cost = torch.sum(torch.abs(y_out_binarized - Y.data))
return loss.item(), cost.item() / batch_size
def evaluate(net, criterion, X, Y):
"""Evaluate a single batch (without training)."""
inp_seq_len = X.size(0)
outp_seq_len, batch_size, _ = Y.size()
# New sequence
net.init_sequence(batch_size)
# Feed the sequence + delimiter
states = []
for i in range(inp_seq_len):
o, state = net(X[i])
states += [state]
# Read the output (no input given)
y_out = torch.zeros(Y.size())
for i in range(outp_seq_len):
y_out[i], state = net()
states += [state]
loss = criterion(y_out, Y)
y_out_binarized = y_out.clone().data
y_out_binarized.apply_(lambda x: 0 if x < 0.5 else 1)
# The cost is the number of error bits per sequence
cost = torch.sum(torch.abs(y_out_binarized - Y.data))
result = {
'loss': loss.data[0],
'cost': cost / batch_size,
'y_out': y_out,
'y_out_binarized': y_out_binarized,
'states': states
}
return result
def train_model(model, args):
num_batches = model.params.num_batches
batch_size = model.params.batch_size
LOGGER.info("Training model for %d batches (batch_size=%d)...",
num_batches, batch_size)
losses = []
costs = []
seq_lengths = []
start_ms = get_ms()
for batch_num, x, y in model.dataloader:
loss, cost = train_batch(model.net, model.criterion, model.optimizer, x, y)
losses += [loss]
costs += [cost]
seq_lengths += [y.size(0)]
# Update the progress bar
progress_bar(batch_num, args.report_interval, loss)
# Report
if batch_num % args.report_interval == 0:
mean_loss = np.array(losses[-args.report_interval:]).mean()
mean_cost = np.array(costs[-args.report_interval:]).mean()
mean_time = int(((get_ms() - start_ms) / args.report_interval) / batch_size)
progress_clean()
LOGGER.info("Batch %d Loss: %.6f Cost: %.2f Time: %d ms/sequence",
batch_num, mean_loss, mean_cost, mean_time)
start_ms = get_ms()
# Checkpoint
if (args.checkpoint_interval != 0) and (batch_num % args.checkpoint_interval == 0):
save_checkpoint(model.net, model.params.name, args,
batch_num, losses, costs, seq_lengths)
LOGGER.info("Done training.")
def init_arguments():
parser = argparse.ArgumentParser(prog='train.py')
parser.add_argument('--seed', type=int, default=RANDOM_SEED, help="Seed value for RNGs")
parser.add_argument('--task', action='store', choices=list(TASKS.keys()), default='copy',
help="Choose the task to train (default: copy)")
parser.add_argument('-p', '--param', action='append', default=[],
help='Override model params. Example: "-pbatch_size=4 -pnum_heads=2"')
parser.add_argument('--checkpoint-interval', type=int, default=CHECKPOINT_INTERVAL,
help="Checkpoint interval (default: {}). "
"Use 0 to disable checkpointing".format(CHECKPOINT_INTERVAL))
parser.add_argument('--checkpoint-path', action='store', default='./',
help="Path for saving checkpoint data (default: './')")
parser.add_argument('--report-interval', type=int, default=REPORT_INTERVAL,
help="Reporting interval")
argcomplete.autocomplete(parser)
args = parser.parse_args()
args.checkpoint_path = args.checkpoint_path.rstrip('/')
return args
def update_model_params(params, update):
"""Updates the default parameters using supplied user arguments."""
update_dict = {}
for p in update:
m = re.match("(.*)=(.*)", p)
if not m:
LOGGER.error("Unable to parse param update '%s'", p)
sys.exit(1)
k, v = m.groups()
update_dict[k] = v
try:
params = attr.evolve(params, **update_dict)
except TypeError as e:
LOGGER.error(e)
LOGGER.error("Valid parameters: %s", list(attr.asdict(params).keys()))
sys.exit(1)
return params
def init_model(args):
LOGGER.info("Training for the **%s** task", args.task)
model_cls, params_cls = TASKS[args.task]
params = params_cls()
params = update_model_params(params, args.param)
LOGGER.info(params)
model = model_cls(params=params)
return model
def init_logging():
logging.basicConfig(format='[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s',
level=logging.DEBUG)
def main():
init_logging()
# Initialize arguments
args = init_arguments()
# Initialize random
init_seed(args.seed)
# Initialize the model
model = init_model(args)
LOGGER.info("Total number of parameters: %d", model.net.calculate_num_params())
train_model(model, args)
if __name__ == '__main__':
main()