-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgenerate_my1_images.py
117 lines (95 loc) · 3.76 KB
/
generate_my1_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
import router
import time
import matplotlib.pyplot as plt
import numpy as np
import time
def plot_stops(stops):
plt.scatter(stops[0][0], stops[0][1], marker='o', s=150, color='xkcd:orange', edgecolor='xkcd:dark grey')
for k, v in list(stops.items())[1:]:
plt.scatter(v[0], v[1], marker='.', s=150, color='xkcd:pink', edgecolor='xkcd:dark grey')
plt.text(v[0]+0.1, v[1]+0.1, str(k), fontdict=dict(color='xkcd:purple'))
def plot_students(students):
for k, v in students.items():
plt.scatter(v[0], v[1], marker='.', s=150, color='xkcd:sky blue', edgecolor='xkcd:dark grey')
plt.text(v[0]+0.1, v[1]+0.1, str(k), fontdict=dict(color='xkcd:blue'))
def plot_student_potential_assignments(student_near_stops):
for k, v in student_near_stops.items():
stud_x, stud_y = students[k]
for i in v:
stop_x, stop_y = stops[i]
plt.plot([stud_x, stop_x], [stud_y, stop_y], 'k:', lw=1.0)
def route_local_search(iterations):
t0 = time.clock()
minvalue = float('+Inf')
min_path_list = None
min_students_dict = None
print('Local search: {0} iterations'.format(iterations))
for i1 in range(iterations):
global_path_list, global_students_dict = router.route_local_search()
if global_path_list == None or global_students_dict == None:
i1=i1-1
dist = router.get_distance()
if dist < minvalue:
print('dist:', dist)
minvalue = dist
min_path_list = global_path_list
min_students_dict = global_students_dict
print('{0:.5f}s'.format(time.clock()-t0))
return [min_path_list, min_students_dict]
def init_pyplot():
#clear all
plt.cla()
plt.clf()
plt.title('{0}\nstops: {1}, students: {2}, maxwalk: {3}, capacity: {4}'.format(fn, len(stops), len(students), maxwalk, capacity))
#black axis lines
plt.axhline(0, color='k', lw=0.5)
plt.axvline(0, color='k', lw=0.5)
plt.grid(True)
plt.xticks(np.arange(-13, 14, 1))
plt.yticks(np.arange(-7, 14, 1))
plt.axis([-13, 14, -7, 14])
#plt.minorticks_on()
plt.tight_layout()
if __name__ == '__main__':
fn = 'instances/my1.txt'
print('Router init', end=' ')
t0 = time.clock()
router = router.Router(fn)
stops = router.get_stops()
students = router.get_students()
maxwalk = router.get_maxwalk()
capacity = router.get_capacity()
student_near_stops = router.get_student_near_stops()
print('{0:.5f}s'.format(time.clock()-t0))
print('Router local search', end=' ')
t0 = time.clock()
paths, stud_assign = route_local_search(1000)
print('{0:.5f}s'.format(time.clock()-t0))
init_pyplot()
plot_students(students)
plot_stops(stops)
plt.savefig('my1-stops.jpg')
plot_student_potential_assignments(student_near_stops)
plt.savefig('my1-potential-stops.jpg')
#init again to clear potential routes
init_pyplot()
plot_students(students)
plot_stops(stops)
for k, v in stud_assign.items():
stud_x, stud_y = students[k]
stop_x, stop_y = stops[v]
plt.plot([stud_x, stop_x],[stud_y, stop_y],'b-', lw=1.0)
for path in paths:
for i in range(len(path)+1):
if i == 0:
stop_x, stop_y = stops[path[0]]
plt.plot([stops[0][0], stop_x],[stops[0][1], stop_y],'r-', lw=1.0)
elif i == len(path):
stop_x, stop_y = stops[path[i-1]]
plt.plot([stops[0][0], stop_x],[stops[0][1], stop_y],'r-', lw=1.0)
elif i < len(path):
first_x, first_y = stops[path[i]]
second_x, second_y = stops[path[i-1]]
plt.plot([first_x, second_x],[first_y, second_y],'r-', lw=1.0)
plt.savefig('my1-route.jpg')