-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassification.tex
79 lines (63 loc) · 2.95 KB
/
Classification.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
\section{Classification}\label{sec:classification}
\begin{center}
\makebox[\columnwidth]{\includegraphics[width=0.9\columnwidth]{images/decision-tree}}
\end{center}
\subsection{Linearity}\label{subsec:linearity}
Given an equation involving a function $u(x), x\in\mathbb{R}$ and its derivatives,
there is a function $F$ describing the relation:
\begin{align*}
F\left(
\begin{matrix}
x,y,z,p,q,s,t,r,\ldots \\
\downarrow \text{(corresponding to)}\downarrow \\
x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^2 u}{\partial x^2},
\frac{\partial^2 u}{\partial x\partial y},\frac{\partial^2 u}{\partial y^2}, \ldots
\end{matrix}
\right) = 0
\end{align*}
(common variable names $p_i\rightarrow\frac{\partial u}{\partial x_i}$ and
$t_{ij} \rightarrow\frac{\partial^2 u}{\partial x_i\partial x_j}$)
A PDE is \emph{linear} when function $F$ is linear in $u,p_1,\ldots,p_n,t_{11},\ldots,t_{nn},\ldots.$
A PDE is \emph{quasilinear} when function $F$ is linear in $p_1,\ldots,p_n,t_{11},\ldots,t_{nn},\ldots.$
For example, given the heat equation $u_t=\kappa u_{xx}$, $F$ would be $F(p_1,t_{22})=p_1-\kappa t_{22}$.
\symbolicsubsection{2\textsuperscript{nd} Order PDEs: Symbol Matrix}
The symbol matrix of the 2\textsuperscript{nd} order partial differential operator
\begin{align*}
L=\sum_{i,j=1}^{n}a_{ij}(x)\frac{\partial^2}{\partial x_i \partial x_j}+\sum_{i=1}^n b_i(x)\frac{\partial}{\partial x_i}+c(x)
\end{align*}
is the symmetric matrix
\begin{align*}
A=
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{bmatrix}
\end{align*}
For example:
\begin{center}
\makebox[\columnwidth]{\includegraphics[width=0.9\columnwidth]{images/symbol-matrix}}
\end{center}
The type of equation can be inferred by the sign of the eigenvalues $\lambda_1,\ldots,\lambda_n$ of the symbol matrix.
Calculating the determinant ($\det A=\prod_i \lambda_i$) and trace ($\mathrm{tr}\ A=\sum_i \lambda_i$)
reveals information about the signs of its eigenvalues:
\subsubsection{Two Variables of PDE}
\begin{align*}
\det A
\left\{
\begin{matrix}
>0 & \text{elliptic (eigenvalues have same sign)} \\
=0 & \text{parabolic (at least one eigenvalue is zero)} \\
<0 & \text{hyperbolic (eigenvalues have opposite sign)}
\end{matrix}
\right.
\end{align*}
\subsubsection{Three Variables of PDE}
\begin{align*}
\mathrm{rank}\ A < 2 & \Rightarrow \text{not classified} \\
\det A\text{ and }\mathrm{tr}\ A\text{ have different sign} & \Rightarrow\text{hyperbolic} \\
\det A=0\text{, semidefinite (Cholesky decomp.)} & \Rightarrow\text{parabolic} \\
A\text{ or }-A\text{ positive definite (Cholesky)} & \Rightarrow\text{elliptic} \\
\text{all other cases} & \Rightarrow\text{hyperbolic}
\end{align*}