-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuasilinear.tex
100 lines (92 loc) · 3.08 KB
/
Quasilinear.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
\section{Quasilinear PDEs}\label{sec:quasilinear-pdes}
\symbolicsubsection{Characteristics}\label{subsec:characteristics}
\begin{wrapfigure}{r}{0.4\columnwidth}
\centering
\includegraphics[width=0.4\columnwidth]{images/quasilinear}
\end{wrapfigure}
The PDE
\begin{align*}
a(x,y,u)\frac{\partial u}{\partial x}+b(x,y,u)\frac{\partial u}{\partial y} = c(x,y,u)
\end{align*}
can be written in vector notation:
\begin{align*}
{\color{green}
\underbrace{
\begin{pmatrix}
a(x,y,u) \\
b(x,y,u) \\
c(x,y,u)
\end{pmatrix}
}_{\vec t}
}
\cdot
{\color{black}
\underbrace{
\begin{pmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
-1
\end{pmatrix}
}_{\vec{n}}
}
&= 0
\end{align*}
where $\color{black}\vec{n}$ is a normal vector and $\color{green}\vec{t}$ is always tangential to the solution surface.
Therefore, we can elaborate a solution algorithm:
\begin{enumerate}
\item{
Using the Cauchy initial curve, we formulate
\begin{align*}
\vec{v}(s) = \begin{pmatrix}
v_x({\color{red}s} ) & v_y({\color{red}s}) & v_z({\color{red}s})
\end{pmatrix}^T
\end{align*}
which is a point on the initial curve, parameterised by $s$.
}
\item{
Find characteristic curves as solution of the ODEs
\begin{align*}
\frac{d}{d{\color{blue}t}}
\begin{bmatrix}
x({\color{blue}t}, {\color{red}s}) \\
y({\color{blue}t}, {\color{red}s}) \\
z({\color{blue}t}, {\color{red}s})
\end{bmatrix}
=
\begin{bmatrix}
a(x({\color{blue}t},{\color{red}s}), y({\color{blue}t},{\color{red}s}), z({\color{blue}t}, {\color{red}s})) \\
b(x({\color{blue}t},{\color{red}s}), y({\color{blue}t},{\color{red}s}), z({\color{blue}t}, {\color{red}s})) \\
c(x({\color{blue}t},{\color{red}s}), y({\color{blue}t},{\color{red}s}), z({\color{blue}t}, {\color{red}s}))
\end{bmatrix}
\end{align*}
with
\begin{align*}
\begin{bmatrix}
x({\color{blue}0}, {\color{red}s}) \\
y({\color{blue}0}, {\color{red}s}) \\
z({\color{blue}0}, {\color{red}s})
\end{bmatrix}
=
\vec{v}({\color{red}s})
=
\begin{bmatrix}
v_x({\color{red}s} ) \\
v_y({\color{red}s}) \\
v_z({\color{red}s})
\end{bmatrix}
\end{align*}
}
\item{
Eliminate the variables {\color{blue}t} and {\color{red}s} and condense solution into a function $u(x, y)$:
\begin{align*}
\left.
\begin{matrix}
x=x({\color{blue}t},{\color{red}s}) \\
y=y({\color{blue}t},{\color{red}s}) \\
u=z({\color{blue}t},{\color{red}s})
\end{matrix}
\ \ \right\}
\ u=u(x,y)
\end{align*}
}
\end{enumerate}