-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransformation.tex
84 lines (70 loc) · 2.69 KB
/
Transformation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\symbolicsubsection{Transformation}\label{subsec:transformation}
\begin{enumerate}
\item{
Transform equation in the unbounded variable (e.g. $t$): derivatives turn into algebraic expressions:
\begin{align*}
\left(
\mathcal{L}\frac{\partial u(t,y)}{\partial t}
\right)(s) =
s
\underbrace{(\mathcal{L}f)(s, y)}_{=y_s(y)}
-u(0,y)
\end{align*}
}
\item{
Transform y-boundary conditions: gives boundary conditions for
\begin{align*}
u(t,0) & =g(t) \\
y_s(0)=(\mathcal{L}u(t,0))(s) & = (\mathcal{L}g)(s)
\end{align*}
}
\item Solve PDE with fewer derivatives, ODEs
\item Inverse transform
\end{enumerate}
In general, one could use the following transforms:
\begin{tabular}{r|l}
Domain & Transform \\
\hline
$[-\pi, \pi]$ & Fourier Series \\
$[a,b]$ & Fourier Series \\
$\mathbb{R}$ & Fourier Transform \\
$\mathbb{R}_+$ & Laplace Transform \\
$G$ & Generalised Fourier Theory
\end{tabular}
\subsubsection{Laplace Transform}
(Only works on linear equations.)
The Laplace transform of a function $f:\mathbb{R}^+\to \mathbb{R}$ is the function
\begin{align*}
\mathcal{L}f : \mathbb{R}^+\to \mathbb{R} : s \rightarrowtail \mathcal{L}f(s) = \int_0^\infty f(t)e^{-st}\ dt
\end{align*}
It is linear:
\begin{align*}
\mathcal{L}(\alpha f+\beta f)=\alpha\mathcal{L}f+\beta\mathcal{L}f
\end{align*}
Example transformations:
\begin{snugshade*}
\begin{align*}
\begin{matrix}
\text{Constant: } & \text{Exponential: } & \text{Derivative: } \\
f(t)=c & f(t)=e^{\emph{$-$}ct} & f(t)=g^{(n)}(t) \\
(\mathcal{L}f)(s) = \frac{c}{s} & (\mathcal{L}f)(s) = \frac{1}{c+s} & (\mathcal{L}f^{(n)})(s)= \\
& & -f^{(n-1)}(0)+s\left(\mathcal{L}f^{(n-1)}\right)(s) \\
& & \text{(removes t-derivatives: }\frac{\partial}{\partial t}\rightarrow s\text{)}
\end{matrix}
\end{align*}
\end{snugshade*}
\subsubsection{Fourier Transform}
For $f : \mathbb{R}\to\mathbb{C} : x \rightarrowtail f(x)$ the Fourier transform of $f$ is defined as
\begin{align*}
\mathcal{F}f = \hat{f} : \mathbb{R}\to\mathbb{C} : k\rightarrowtail
\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}\ dx
\end{align*}
It turns the derivative $\frac{\partial}{\partial x}$ into a multiplication by $-ik$ (second derivatives are reduced to $i^2=-1$):
\begin{align*}
(\mathcal{F}f^{(n)})(k) = (ik)^n\mathcal{F}f(k)
\end{align*}
The function $f$ can be recovered from $\hat{f}$ by
\begin{align*}
f(x)=(\mathcal{F}^{-1}\hat{f})(x)
= \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \hat{f}(k) e^{ikx}\ dk
\end{align*}