forked from breeze7-opt/optimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNN.py
37 lines (31 loc) · 1.4 KB
/
RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch.nn as nn
class RNNModel(nn.Module):
def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp) # Token2Embeddings
self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout) #(seq_len, batch_size, emb_size)
self.decoder = nn.Linear(nhid, ntoken)
self.init_weights()
self.nhid = nhid
self.nlayers = nlayers
def init_weights(self):
initrange = 0.05
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, input, hidden):
# input size(bptt, bsz)
emb = self.drop(self.encoder(input))
# emb size(bptt, bsz, embsize)
# hid size(layers, bsz, nhid)
output, hidden = self.rnn(emb, hidden)
# output size(bptt, bsz, nhid)
output = self.drop(output)
# decoder: nhid -> ntoken
decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2)))
return decoded, hidden
def init_hidden(self, bsz):
# LSTM h and c
weight = next(self.parameters()).data
return weight.new_zeros(self.nlayers, bsz, self.nhid), weight.new_zeros(self.nlayers, bsz, self.nhid)