-
Notifications
You must be signed in to change notification settings - Fork 16
/
cub200.py
201 lines (178 loc) · 7.45 KB
/
cub200.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*
"""This module is served as torchvision.datasets to load CUB200-2011.
CUB200-2011 dataset has 11,788 images of 200 bird species. The project page
is as follows.
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
- Images are contained in the directory data/cub200/raw/images/,
with 200 subdirectories.
- Format of images.txt: <image_id> <image_name>
- Format of train_test_split.txt: <image_id> <is_training_image>
- Format of classes.txt: <class_id> <class_name>
- Format of iamge_class_labels.txt: <image_id> <class_id>
This file is modified from:
https://github.com/vishwakftw/vision.
"""
import os
import pickle
import numpy as np
import PIL.Image
import torch
__all__ = ['CUB200']
__author__ = 'Hao Zhang'
__copyright__ = '2018 LAMDA'
__date__ = '2018-01-09'
__email__ = '[email protected]'
__license__ = 'CC BY-SA 3.0'
__status__ = 'Development'
__updated__ = '2018-01-10'
__version__ = '1.0'
class CUB200(torch.utils.data.Dataset):
"""CUB200 dataset.
Args:
_root, str: Root directory of the dataset.
_train, bool: Load train/test data.
_transform, callable: A function/transform that takes in a PIL.Image
and transforms it.
_target_transform, callable: A function/transform that takes in the
target and transforms it.
_train_data, list of np.ndarray.
_train_labels, list of int.
_test_data, list of np.ndarray.
_test_labels, list of int.
"""
def __init__(self, root, train=True, transform=None, target_transform=None,
download=False):
"""Load the dataset.
Args
root, str: Root directory of the dataset.
train, bool [True]: Load train/test data.
transform, callable [None]: A function/transform that takes in a
PIL.Image and transforms it.
target_transform, callable [None]: A function/transform that takes
in the target and transforms it.
download, bool [False]: If true, downloads the dataset from the
internet and puts it in root directory. If dataset is already
downloaded, it is not downloaded again.
"""
self._root = os.path.expanduser(root) # Replace ~ by the complete dir
self._train = train
self._transform = transform
self._target_transform = target_transform
if self._checkIntegrity():
print('Files already downloaded and verified.')
elif download:
url = ('http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/'
'CUB_200_2011.tgz')
self._download(url)
self._extract()
else:
raise RuntimeError(
'Dataset not found. You can use download=True to download it.')
# Now load the picked data.
if self._train:
self._train_data, self._train_labels = pickle.load(open(
os.path.join(self._root, 'processed/train.pkl'), 'rb'),encoding='iso-8859-1')
assert (len(self._train_data) == 5994
and len(self._train_labels) == 5994)
else:
self._test_data, self._test_labels = pickle.load(open(
os.path.join(self._root, 'processed/test.pkl'), 'rb'),encoding='iso-8859-1')
assert (len(self._test_data) == 5794
and len(self._test_labels) == 5794)
def __getitem__(self, index):
"""
Args:
index, int: Index.
Returns:
image, PIL.Image: Image of the given index.
target, str: target of the given index.
"""
if self._train:
image, target = self._train_data[index], self._train_labels[index]
else:
image, target = self._test_data[index], self._test_labels[index]
# Doing this so that it is consistent with all other datasets.
image = PIL.Image.fromarray(image)
if self._transform is not None:
image = self._transform(image)
if self._target_transform is not None:
target = self._target_transform(target)
return image, target
def __len__(self):
"""Length of the dataset.
Returns:
length, int: Length of the dataset.
"""
if self._train:
return len(self._train_data)
return len(self._test_data)
def _checkIntegrity(self):
"""Check whether we have already processed the data.
Returns:
flag, bool: True if we have already processed the data.
"""
return (
os.path.isfile(os.path.join(self._root, 'processed/train.pkl'))
and os.path.isfile(os.path.join(self._root, 'processed/test.pkl')))
def _download(self, url):
"""Download and uncompress the tar.gz file from a given URL.
Args:
url, str: URL to be downloaded.
"""
import six.moves
import tarfile
raw_path = os.path.join(self._root, 'raw')
processed_path = os.path.join(self._root, 'processed')
if not os.path.isdir(raw_path):
os.mkdir(raw_path, mode=0o775)
if not os.path.isdir(processed_path):
os.mkdir(processed_path, mode=0x775)
# Downloads file.
fpath = os.path.join(self._root, 'raw/CUB_200_2011.tgz')
try:
print('Downloading ' + url + ' to ' + fpath)
six.moves.urllib.request.urlretrieve(url, fpath)
except six.moves.urllib.error.URLError:
if url[:5] == 'https:':
self._url = self._url.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.')
print('Downloading ' + url + ' to ' + fpath)
six.moves.urllib.request.urlretrieve(url, fpath)
# Extract file.
cwd = os.getcwd()
tar = tarfile.open(fpath, 'r:gz')
os.chdir(os.path.join(self._root, 'raw'))
tar.extractall()
tar.close()
os.chdir(cwd)
def _extract(self):
"""Prepare the data for train/test split and save onto disk."""
image_path = os.path.join(self._root, 'raw/CUB_200_2011/images/')
# Format of images.txt: <image_id> <image_name>
id2name = np.genfromtxt(os.path.join(
self._root, 'raw/CUB_200_2011/images.txt'), dtype=str)
# Format of train_test_split.txt: <image_id> <is_training_image>
id2train = np.genfromtxt(os.path.join(
self._root, 'raw/CUB_200_2011/train_test_split.txt'), dtype=int)
train_data = []
train_labels = []
test_data = []
test_labels = []
for id_ in range(id2name.shape[0]):
image = PIL.Image.open(os.path.join(image_path, id2name[id_, 1]))
label = int(id2name[id_, 1][:3]) - 1 # Label starts with 0
# Convert gray scale image to RGB image.
if image.getbands()[0] == 'L':
image = image.convert('RGB')
image_np = np.array(image)
image.close()
if id2train[id_, 1] == 1:
train_data.append(image_np)
train_labels.append(label)
else:
test_data.append(image_np)
test_labels.append(label)
pickle.dump((train_data, train_labels),
open(os.path.join(self._root, 'processed/train.pkl'), 'wb'))
pickle.dump((test_data, test_labels),
open(os.path.join(self._root, 'processed/test.pkl'), 'wb'))