This repository has been archived by the owner on Sep 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathaae.py
185 lines (151 loc) · 6.17 KB
/
aae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import sys
import argparse
import numpy as np
import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
import mindspore.numpy as mnp
from mindspore import ms_function
from tqdm import tqdm
sys.path.append(os.pardir)
from layers import Dense
from img_utils import to_image
from dataset import create_dataset
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=10, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
img_shape = (opt.channels, opt.img_size, opt.img_size)
latent_dim = opt.latent_dim
def reparameterization(mu, logvar):
std = ops.exp(logvar / 2)
sampled_z = mnp.randn((mu.shape[0], latent_dim))
z = sampled_z * std + mu
return z
class Encoder(nn.Cell):
def __init__(self):
super(Encoder, self).__init__()
self.model = nn.SequentialCell(
Dense(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2),
nn.Dense(512, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
)
self.mu = Dense(512, latent_dim)
self.logvar = Dense(512, latent_dim)
def construct(self, img):
img_flat = img.view(img.shape[0], -1)
x = self.model(img_flat)
mu = self.mu(x)
logvar = self.logvar(x)
z = reparameterization(mu, logvar)
return z
class Decoder(nn.Cell):
def __init__(self):
super(Decoder, self).__init__()
self.model = nn.SequentialCell(
Dense(latent_dim, 512),
nn.LeakyReLU(0.2),
Dense(512, 512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
Dense(512, int(np.prod(img_shape))),
nn.Tanh(),
)
def construct(self, z):
img_flat = self.model(z)
img = img_flat.view(img_flat.shape[0], *img_shape)
return img
class Discriminator(nn.Cell):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.SequentialCell(
Dense(latent_dim, 512),
nn.LeakyReLU(0.2),
Dense(512, 256),
nn.LeakyReLU(0.2),
Dense(256, 1),
nn.Sigmoid(),
)
def construct(self, z):
validity = self.model(z)
return validity
# Use binary cross-entropy loss
adversarial_loss = nn.BCELoss(reduction='mean')
pixelwise_loss = nn.L1Loss()
# Initialize generator and discriminator
encoder = Encoder()
decoder = Decoder()
discriminator = Discriminator()
encoder.update_parameters_name('encoder')
decoder.update_parameters_name('decoder')
discriminator.update_parameters_name('discriminator')
encoder.set_train()
decoder.set_train()
discriminator.set_train()
# Optimizers
optimizer_G = nn.Adam(
encoder.trainable_params() + decoder.trainable_params(),
learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=opt.lr, beta1=opt.b1, beta2=opt.b2)
optimizer_G.update_parameters_name('optim_g')
optimizer_D.update_parameters_name('optim_d')
def generator_forward(real_imgs, valid):
encoded_imgs = encoder(real_imgs)
decoded_imgs = decoder(encoded_imgs)
# Loss measures generator's ability to fool the discriminator
g_loss = 0.001 * adversarial_loss(discriminator(encoded_imgs), valid) + 0.999 * pixelwise_loss(
decoded_imgs, real_imgs
)
return g_loss, encoded_imgs
def discriminator_forward(encoded_imgs, valid, fake):
# Sample noise as discriminator ground truth
z = mnp.randn((imgs.shape[0], latent_dim))
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(z), valid)
fake_loss = adversarial_loss(discriminator(encoded_imgs), fake)
d_loss = 0.5 * (real_loss + fake_loss)
return d_loss
grad_generator_fn = ops.value_and_grad(generator_forward, None,
optimizer_G.parameters,
has_aux=True)
grad_discriminator_fn = ops.value_and_grad(discriminator_forward, None,
optimizer_D.parameters)
@ms_function
def train_step(imgs):
valid = ops.ones((imgs.shape[0], 1), mindspore.float32)
fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)
(g_loss, encoded_imgs), g_grads = grad_generator_fn(imgs, valid)
optimizer_G(g_grads)
d_loss, d_grads = grad_discriminator_fn(encoded_imgs, valid, fake)
optimizer_D(d_grads)
return g_loss, d_loss
dataset = create_dataset('../../dataset', 'train', opt.img_size, opt.batch_size, num_parallel_workers=opt.n_cpu)
dataset_size = dataset.get_dataset_size()
def sample_image(n_row, batches_done):
"""Saves a grid of generated digits"""
# Sample noise
z = mnp.randn((n_row ** 2, latent_dim))
gen_imgs = decoder(z)
to_image(gen_imgs, "images/%d.png" % batches_done, nrow=n_row, normalize=True)
for epoch in range(opt.n_epochs):
t = tqdm(total=dataset_size)
t.set_description('Epoch %i' % epoch)
for i, (imgs, _) in enumerate(dataset.create_tuple_iterator()):
g_loss, d_loss = train_step(imgs)
t.set_postfix(g_loss=g_loss, d_loss=d_loss)
t.update(1)
batches_done = epoch * dataset_size + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)